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ABSTRACT

In this paper, we study the impact of dialogue representations and
classification methods in the task of theme identification of tele-
phone conversation services having highly imperfect automatic tran-
scriptions. Two dialogue representations are firstly compared: the
classical Term Frequency-Inverse Document Frequency with Gini
purity criteria (TF-IDF-Gini) method and the Latent Dirichlet Allo-
cation (LDA) approach. We then propose to study an original clas-
sification method that takes advantage of the LDA topic space rep-
resentation, highlighted as the best dialogue representation. To do
so, two assumptions about topic representation led us to choose a
Gaussian process (GP) based method. This approach is compared
with a Support Vector Machine (SVM) classification method. Re-
sults show that the GP approach is a better solution to deal with the
multiple theme complexity of a dialogue, no matter the conditions
studied (manual or automatic transcriptions). We finally discuss the
impact of the topic space reduction on the classification accuracy.

Index Terms— Speech analytics, Theme classification, Latent
dirichlet allocation, SVM, Gaussian process

1. INTRODUCTION

The automatic analysis of telephone conversations is a particular
case of human/human interactions that involves many difficulties.
Indeed, the customer behavior is highly unpredictable which leads
to conversations that may contain very noisy segments. When tran-
scribed by an Automatic Speech Recognition (ASR) system, these
highly imperfect transcriptions are difficult to exploit.

One purpose of the telephone conversation application is to iden-
tify themes that appear in the conversation. A conversation may con-
tain more than one semantically related theme, some of them being
irrelevant for the application task. Agents then annotate a conver-
sation with what they consider the major theme of the customer re-
quest: as a result, a single theme is associated for each conversation.

In this paper, we firstly investigate the use of two dialogue rep-
resentation methods by firstly comparing their performance with the
same classification algorithm. We then propose to evaluate two clas-
sification methods using the best chosen dialogue representation.

In the context of Information Retrieval (IR) tasks, the main fea-
ture used is the term frequency that allows to obtain a subset of dis-
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criminative1 words for a considered class. This set of discriminative
words should permit to compose a vector representation of conver-
sation themes in the semantic space. Its application to automatic
transcriptions is more difficult since transcription errors would lead
to an incorrect word representation. Thereby, we assume that dia-
logues have to be considered in an intermediate thematic representa-
tion to fully perform this multiple theme complexity. For this reason,
the projection of the automatically transcribed words in a more ab-
stracted space could increase the robustness to the ASR errors.

Thus, we propose to explore a term frequency, with the TF-
IDF-GINI method, and a topic space representation, with a Latent
Dirichlet Allocation (LDA) approach [1], coupled with a classifica-
tion method to automatically identify themes from highly imperfect
transcriptions.

The other main issue is the choice of the best classification
method that does not modify the dialogue topic representation. In
the second part of this paper, the classical SVM method [2], that
modifies the dialogue representation with a kernel function, is com-
pared with a Naive Bayesian classifier, that does not modify it. We
assume that this original study will highlight the fact that these two
assumptions are relevant: the Gaussianity of the theme classes and
the equality of the class covariances.

We finally discuss the impact of the LDA topic space granular-
ity and the space reduction on the theme classification accuracy. In
particular, we want to show that the impact of this space reduction
varies depending on the number of topics considered.

The paper is organized as follows. Section 2 presents the related
work. The dialogue representation approaches and the classification
methods are described in sections 3 and 4. Sections 5 and 6 reports
experimental results before concluding in section 7.

2. RELATED WORK

The classical Term Frequency-Inverse Document Frequency (TF-
IDF) [3] has been widely used for extracting discriminative words.
Improvements are observed with the Gini purity criteria [4].

Other approaches proposed to consider the document as a mix-
ture of latent topics. These methods, such as Latent Semantic Anal-
ysis (LSA) [5, 6], Probabilistic LSA (PLSA) [7] or Latent Dirich-
let Allocation (LDA) [1], build a higher-level representation of the
document in a topic space. Documents are then considered as a bag-
of-words [8] where the word order is not taken into account. These
methods demonstrated their performance on various tasks, such as

1The term “discriminative” is associated to a word if it permits to discern
a class from the others.



sentence [9] or keyword [10] extraction. In opposition to a multi-
nomial mixture model, LDA considers that a theme is associated
to each occurrence of a word composing the document, rather than
associate a topic with the complete document. Thereby, a docu-
ment can change of topics from a word to another. However, the
word occurrences are connected by a latent variable which controls
the global respect of the distribution of the topics in the document.
These latent topics are characterized by a distribution of word prob-
abilities which are associated with them. PLSA and LDA models
generally outperform LSA on IR tasks [11].

Various classification approaches have been studied. One of the
most used is the Support Vector Machine (SVM) method. SVMs are
a set of supervised learning techniques. Knowing a sample, SVMs
determine a separation plan between parts of the samples called sup-
port vector. Then, a separating hyperplane that maximizes the mar-
gin between the support vectors and the hyperplane separator [12]
is calculated. SVMs were used for the first time by [13] both in
regression [14] and in classification [15] tasks.

A LDA-based approach combined with a SVM classification
process has recently been studied in various domains, such as bi-
ology [16], text classification [17], audio information retrieval [18],
social event detection [19] or image detection [20]. A combined
LDA-SVM approach has been explored in the context of keyword
extraction in automatic transcriptions [21], but not in the context of
the theme classification of highly imperfect automatic transcriptions.

The Gaussian classifier based on a Bayes decision rule has been
studied mainly in speaker identification from audio, such as [22],
where the authors use a compact version of a Gaussian Mixture
Model (GMM) super-vector (named i-vector), or in [23], where a
within covariance matrix of normalized data to represent the inters-
ession variability is proposed. The Mahalanobis [24] metric distance
is generally used to evaluate this particular task. To our knowledge,
a combined LDA-Gaussian-based Bayes approach has not yet been
applied for this particular multi-theme classification problem.

3. DIALOGUE REPRESENTATION

The next sections describe two different unsupervised approaches
to create a vector representation of words: a term frequency
Okapi/BM25 vector [3] with the TF-IDF-Gini method [4] and a
topic space representation with the LDA approach [1].

3.1. Term frequency representation using discriminative terms
Let’s consider a corpus D of dialogues d with a word vocabulary
V = {wm}Nm=1 of size N where d is seen as a bag-of-words [8].
A term w of V is chosen from its importance δwt = p(w|t) =
tf(w)idf(w)gini(w) in the theme t. gini(w) is common for all
the themes. Then the words having the highest scores ∆ for all the
themes T constitute a discriminative word subset V∆. Each theme
t ∈ T has its own score δt and its own frequency γt = p(t) which
is the frequency of the dialogues d ∈ t in the corpus D. Note that a
same word w can be present in different themes, but with different
scores depending of its relevance in the theme:

∆(w) = p(w|t, t ∈ T) =
∑
t∈T

p(w|t)p(t)

=
〈−→
δw,−→γ

〉
t∈T

. (1)

For each dialogue d ∈ D, a semantic feature vector V s
d is deter-

mined. The nth (1 ≤ n ≤ |V∆|) feature V s
d [n] is composed with

the number of occurrences of the word wn (|wn|) in d and the score

∆ of wn (see equation 1) in the discriminative word set V∆ defined
as V s

d [n] = |wn| ×∆(wn).

3.2. Topic representation

The topic representation is performed using a Latent Dirichlet
Allocation (LDA) approach. The LDA parameters are estimated
by using the Gibbs sampling technique. This is due to the diffi-
culty to directly and exactly estimate parameters that maximize the
likelihood of the whole data collection defined as: p(W |−→α ,

−→
β ) =∏M

m=1 p(
−→wm|−→α ,

−→
β ) for the whole data collectionW = {−→wm}Mm=1

knowing the Dirichlet parameters −→α and
−→
β .

Several techniques to estimate the LDA parameters exist, such
as Variational Methods [1], Expectation-propagation [25] or Gibbs
sampling [26]. Gibbs sampling is a special case of Markov-chain
Monte Carlo (MCMC) [27] and gives a simple algorithm to approx-
imate inference in high-dimensional models such as LDA [28]. The
first use of Gibbs sampling for estimating LDA is reported in [26]
and a more comprehensive description of this method is available
in the technical report [28]. This method is used both to estimate
parameters of LDA and to infer an unseen dialogue with the topic
space. Thus, the Gibbs sampling allows to obtain a feature vector V z

d

of the topic representation of d. The features considered for describ-
ing a dialogue d are the probabilities p(zf |d), where zn 1 ≤ f ≤ n
is a hidden topic belonging to a hidden topic space. Let V z

d be the
vector of these probabilities.

4. CLASSIFICATION METHODS

This section presents the proposed theme classification approaches
that use the extracted vectors V z

d to learn a classifier (SVM or
Gaussian-based approaches).

4.1. Gaussian-based Bayes classifier

This probabilistic approach ignores the process by which vectors
were extracted. Instead, they pretend they were generated by a pre-
scribed generative model. Once a topic vector is obtained from a
dialogue, the LDA mechanism is ignored and is considered as an
observation from a probabilistic generative model. The two most
simple assumptions are those of the homoscedastic Gaussian-based
Bayes classifier [29]: (i) the Gaussianity of the theme classes and (ii)
the equality of the class covariances.

The Gaussian classifier is based on the Bayes decision rule and
is combined with a scoring metric to assign the most likely theme
t̂ to a dialogue d. Given a training dataset D of dialogues, let W
denote the within dialogue covariance matrix defined by:

W =

K∑
k=1

nt

n
Wk =

1

n

K∑
k=1

nt∑
i=0

(
xik − xk

)(
xik − xk

)t
(2)

where K is the number of themes, Wk is the covariance matrix
of the kth theme Ck, nt is the number of dialogues annotated with
for the theme tk, n is the total number of dialogues in the training
set, xik is the vector of features for the ith dialogue annotated with
the kth theme and xk is the centroid of all vectors xik describing the
features of dialogues annotated with the kth theme. Each dialogue
does not contribute to the covariance in an equivalent way. For this
reason, the term nt

n
is introduced in equation 2.

If homoscedasticity (equality of the class covariances) and
Gaussian conditional density models are assumed, a new observa-
tion x from the test dataset can be assigned to the most likely theme
kBayes using the Gaussian classifier based on the Bayes decision rule:



t̂Bayes = arg max
k

{
−1

2
(x− xk)t W−1 (x− xk) + ak

}
(3)

where x is the feature vector of a document d, W is the within
theme covariance matrix defined in equation 2, N denotes the nor-
mal distribution and ak is the log prior probability of the theme
membership (ak = log (p(Ck))). It is worth noting that, with these
assumptions, the Bayesian approach is similar to the Fisher’s geo-
metric approach: x is assigned to the nearest centroid’s class, ac-
cording to the Mahalanobis [24] metric of W−1:

t̂Bayes = arg max
k

{
−1

2
||x− xk||2W−1 + ak

}
(4)

4.2. SVM classification

This classifier modifies the representation of dialogues, which are
mapped into a space of higher dimension. This goes against the
assumptions previously defined in section 4.1.

As the classification of dialogues requires a multi-class classi-
fier, the SVM one-against-one method is chosen with a linear kernel.
This method gives a better accuracy than the one-against-rest [2].
In this multi-theme problem, T denotes the number of themes and
ti, i = 1, . . . , T denotes the T themes. A binary classifier is used
with a linear kernel for every pair of distinct theme. As a result, bi-
nary classifiers T (T − 1)/2 are constructed all together. The binary
classifier Ci,j is trained from example data where ti is a positive
class and tj a negative one (i 6= j).

For a vector representation of an unseen dialogue d, if Ci,j

means that d is in the theme ti, then the vote for the class ti is added
by one. Otherwise, the vote for the theme tj is increased by one.
After the vote of all classifiers, the dialogue d is assigned to the
theme having the highest number of votes.

5. EXPERIMENTAL PROTOCOL

Experiments are performed using The DECODA project corpus [30].
This corpus is composed of 1,514 telephone conversations split into
a train set (740 dialogues), a development set (447 dialogues) and
a test set (327 dialogues), and manually annotated with 8 conversa-
tion themes: problems of itinerary, lost and found, time schedules,
transportation cards, state of the traffic, fares, infractions and spe-
cial offers.

The ASR system used for the experiments is the LIA-Speeral
system [31]. Model parameters were estimated with maximum a-
posteriori probability (MAP) adaptation from 150 hours of speech
in telephone condition. The vocabulary contains 5,782 words. A
3-gram language model (LM) was obtained by adapting a basic LM
with the train set transcriptions. This system reaches an overall Word
Error Rate (WER) of 45.8% on the train set, of 59.3% on the de-
velopment set, and of 58.0% on the test set. These high WER are
mainly due to speech disfluencies and to adverse acoustic environ-
ments for some dialogues when, for example, users are calling from
noisy streets with mobile phones. A “stop list” of 126 words2 was
used to remove unnecessary words which results in a WER of 33.8%
on the train, of 45.2% on the development, and of 49.5% on the test.

Experiments are conducted with the two unsupervised classi-
fication methods (SVM / Gaussian) on the manual (TRS) and the
automatic transcriptions only (ASR). We also propose to study the

2http://code.google.com/p/stop-words/

combination of both (TRS+ASR) in order to see if ASR errors can
be supplied by the correct reference words.

The train set is used to compose a subset of discriminative words
to elaborate a semantic space for each conversation of the test corpus
with the basic TF-IDF-Gini method. In the experiments, the number
of discriminative words has been varied from 800 to the total number
of words contained in the train corpus (7,920 words). The test corpus
contains 3,806 words (70.8% occur in the train corpus).

19 topic spaces with a different topic number ({5, . . . , 300}) are
also elaborated on the train corpus by using a LDA model made with
the LDA Mallet Java implementation [32].

Then, for both configurations (semantic or topic vectors), a SVM
classifier is learned with the LIBSVM library [33]. SVM parame-
ters are optimized by cross validation on the train corpus. Finally,
the SVM classifier is compared with a Gaussian classifier is trained
based on the Bayes decision rule.

6. EXPERIMENTS AND RESULTS

In this section, the results with two different dialogue representations
and two different classification methods are shown. Then, the repre-
sentation space is reduced and the impact of this space reduction in
terms of classification accuracy is discussed in section 6.3.

6.1. Impact of Dialogue representations

Figures 1-(a) and 1-(b) present the theme classification accuracies
obtained by the TF-IDF-Gini and the LDA approaches on the test
corpus for all transcription configurations (TRS/ASR) when varying
the word extraction conditions (number of discriminative words and
number of topics). We can see that the LDA-based method outper-
forms the best results obtained by the TF-IDF-Gini approach (see
table 1).

Table 1: Theme classification accuracy on two dialogue representa-
tions with a SVM classifier (Confidence of ±3.69% for LDA)

DATA BEST ACCURACY (%)
Train Test #words TF-IDF-Gini #topics LDA
TRS TRS 800 79.7 100 86.6
TRS ASR 8000 69.7 40 77.0
ASR ASR 800 73.5 60 81.4

ASR+TRS ASR 2400 72.2 100 78.7

As expected, the best classification results are obtained by the
TRS train / TRS test configuration (TRS→ TRS) with a gain of 6.9
points with the LDA method. We can also note that the ASR test
reached the best performance using the ASR training data condition.
A gain of 7.9 points is noted with the LDA method compared to
the TF-IDF-Gini approach on the automatic transcriptions. It seems
clear that using comparable training and testing configurations al-
lows to achieve the best classification performance, whether it be on
manual or on automatic transcriptions.

We can finally note that the LDA approach performance has a
tendency to fluctuate when varying the number of topics. This could
be explained by the high Word Error Rate (WER) of the targeted cor-
pus: indeed, the words chosen as discriminative in particular topic
number conditions could be wrongly transcribed in a high propor-
tion. This assumption is supported by analyzing the 90 topics con-
dition (see figure 1). An important performance drop is observed for
the ASR training conditions while a smaller performance lost is seen
when using the reference transcriptions (TRS).
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Fig. 1: Theme classification performance using 3 configurations: TF-IDF (a) and LDA (b) + SVM, and LDA (c) + Gaussian classifier.

6.2. Impact of Classification methods

Figures 1-(b) and (c) show the theme classification accuracies ob-
tained by the SVM and the Gaussian approaches on the test corpus
for all transcription configurations (TRS/ASR). We can see that the
Gaussian method outperforms the results obtained by the SVM ap-
proach no matter the condition studied (see table 2). As already seen
in dialogue representation, the TRS→ TRS configuration achieves
the best results with a gain of 0.8 point using the Gaussian classifier
method. If focusing on the ASR→ ASR experience, the Gaussian
method obtains a gain of 1.9 points in comparison to the SVM ap-
proach. We can finally notice that above 100 topics, the accuracy of
the Gaussian classifier decreases. It could be explained by a lack of
training data to correctly estimate a topic space of such size.

Table 2: Theme classification accuracy using the SVM and the
Gaussian approaches (Confidence of ±3.69% for SVM)

DATA BEST ACC. (%) BEST ACC. (%)
SVM Gaussian

Train Test #topics Test #topics Dev #topics Test
TRS TRS 100 86.6 80 92.2 80 87.4
TRS ASR 40 77.0 40 84.5 80 79.3
ASR ASR 60 81.4 60 86.6 80 83.3

ASR+TRS ASR 100 78.7 90 89.7 80 81.6

6.3. Impact of the space reduction

Figures 2-(a) and 2-(b) present the theme classification performance
obtained on the manual transcription condition (TRS→ TRS) using
the Gaussian-based Bayes classification approach.

The original precision curve (dashed line) represents the results
obtained with the LDA-based method using the original topic space,
already presented in figure 1-(b) (TRS → TRS). These results are
compared with those obtained with a topic space of reduced size (tri-
angle dots). These reductions are performed from a Principal Com-
ponent Analysis (PCA) on topic spaces that have a size greater than
n (n = 40 in figure 2-(a) or n = 80 in figure 2-(b)). The last line
(square dots) represents the results obtained with the original topic
space of exact size n.

Let’s consider the topic space size of 80 dimensions in figure 2-
(a) (40 dimensions). We can see that the original classification ac-
curacy is about 87%. Then, when focusing on the PCA reduction
(LDA+PCA → space size=40), the accuracy reaches about 85%.

This precision has been obtained by reducing the number of top-
ics from 80 to 40 dimensions. Thus, we can notice that the precision
decreases using this new reduced space representation. For all the
other studied dimension sizes (n 6= 80), the reduction of the topic
space sizes to n improves the results for both cases (n = 40 in or
n = 80). Nonetheless, we have to note that the classification accu-
racy never reaches the best results obtained with the original LDA
topic space size (square dots).

We can conclude that the reduction permits to cluster topics and
to improve the results. The fact that we artificially increase the num-
ber of topics (granularity) without increasing the number of conver-
sations in the training corpus for each theme, leads to decrease the
variability within themes but does not allow to reach the accuracy of
the optimal exact topic space size (n).
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Fig. 2: Theme classification performance (accuracy %) with models
m (|m| > n) for n = 40 (a) and n = 80 (b).

7. CONCLUSIONS

In this paper, we presented an architecture to identify conversation
themes using two different dialogue representations and classifica-
tion methods. We showed that the proposed topic representation us-
ing a LDA-based method outperforms the classification results ob-
tained by the classical TF-IDF-Gini approach. The classification ac-
curacy reaches 86.6% on manual transcriptions and 81.4% on auto-
matic transcriptions with a respective gain of 6.9 and 7.9 points.

The second part of the work focused on choosing the best clas-
sification method. We highlighted that the intuitions about the Gaus-
sianity of the theme classes and the equality of the class covariances



discussed in this paper are effective. Thus, the topic representation
using a Gaussian classifier method outperforms the classification re-
sults obtained by the classical SVM approach. The accuracy reaches
87.4% on manual transcriptions and 84.4% on highly imperfect au-
tomatic transcriptions with a respective gain of 0.8 and 1.9 points.

In the last part of this study, we demonstrated that the space
reduction (LDA+PCA) improves the results obtained with the di-
alogues in the original topic space. Nonetheless, we also pointed
out that this reduction does not allow to achieve the original results
obtained with the optimal exact topic space size.
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