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ABSTRACT
Modern end-to-end (E2E) Automatic Speech Recognition (ASR)
systems rely on Deep Neural Networks (DNN) that are mostly
trained on handcrafted and pre-computed acoustic features such as
Mel-filter-banks or Mel-frequency cepstral coefficients. Nonethe-
less, and despite worse performances, E2E ASR models processing
raw waveforms are an active research field due to the lossless nature
of the input signal. In this paper, we propose the E2E-SincNet, a
novel fully E2E ASR model that goes from the raw waveform to
the text transcripts by merging two recent and powerful paradigms:
SincNet and the joint CTC-attention training scheme. The conducted
experiments on two different speech recognition tasks show that our
approach outperforms previously investigated E2E systems relying
either on the raw waveform or pre-computed acoustic features, with
a reported top-of-the-line Word Error Rate (WER) of 4.7% on the
Wall Street Journal (WSJ) dataset.

Index Terms— End-to-end speech recognition, SincNet.

1. INTRODUCTION

ASR systems are either hybrid DNN-HMM or end-to-end (E2E).
The former set of ASR models provides state-of-the-art perfor-
mances on numerous speech-related real-world tasks [1, 2] but
involves multiple sub-blocks trained separately, and often requires
separate and a strong human expertise. E2E systems, on the other
hand, propose to directly transcribe a sequence of acoustic input fea-
tures [3, 4] with a single model usually composed of different Neural
Networks (NN) trained jointly in an end-to-end manner. In particu-
lar, a major challenge is to automatically generate an alignment from
the raw signal that often contains several thousands of data point per
second, to the text, only consisting of a single character or concept
in the same time scale.

Recently, E2E approaches started to outperform traditional
DNN-HMM baselines on common speech recognition tasks with
the introduction of more efficient sequence training objectives
[5, 6], more powerful architectures [7, 8] and attention mecha-
nisms [9, 10, 11, 12]. Despite being named “E2E”, the latter models
still require pre-processed acoustic features such as Mel-filter-banks,
alleviating a pure E2E pipeline based on the raw audio signal.

Processing raw waveforms in the specific context of ASR is an
active challenge [13, 14, 15, 7]. Most of these works rely on modi-
fied Convolutional Neural Networks (CNNs) to operate over the sig-
nal. As an example, in [7], the authors propose to combine a log
non-linearity with a CNN architecture that exactly matches an output
dimension equivalent to standard Mel-filter-banks features, forcing
the input layer to learn the latter signal transformation. Nevertheless,
and as demonstrated in [16], CNNs are not efficient at learning com-
mon acoustic features due to the lack of constraint on the numerous

trainable parameters. Consequently, the authors proposed SincNet, a
specific convolutional layer that integrates common acoustic filters,
such as band-pass filters, to replace the convolutional kernel weights
drastically reducing the number of parameters. Furthermore, it is
demonstrated that the learned filters have a much better frequency re-
sponse than those learned with traditional CNNs, resulting in better
performances in a speaker recognition task. Then, SincNet has been
combined with a straightforward fully-connected DNN in the con-
text of a DNN-HMM ASR system also outperforming CNNs trained
with both pre-computed acoustic features and raw waveforms [17].

Unfortunately, there is no available model combining both the
efficacy of SincNet to operate over raw signals, and the latest train-
ing scheme for E2E systems. Therefore, we propose to bridge
this gap by investigating and releasing1 a fully E2E model, named
E2E-SincNet, combining SincNet with the joint CTC-attention
training scheme [5] and resulting in a customizable, efficient and
interpretable E2E ASR system. Contributions of the paper are
summarized as:

1. Enhance the original SincNet to fit bi-directional recurrent
neural networks (RNN).

2. Merge the later model with the joint CTC-attention method
[5] to create E2E-SincNet1 based on the well-known ESPnet
toolkit [18] (Section 2).

3. Evaluate the model alongside with other baseline models on
the WSJ and TIMIT speech recognition tasks (Section 3).

The conducted experiments show that E2E-SincNet obtains su-
perior and state-of-the-art (SOTA) performances to both traditional
E2E models operating on raw waveform with CNNs, and SOTA E2E
architectures relying on pre-computed acoustic features.

2. END-TO-END SPEECH RECOGNITION

This section introduces the necessary building blocks to conceive a
fully E2E automatic speech recognition system. First, latent acoustic
features are extracted from the raw waveform signal with a specific
kernelized CNN, also known as SincNet [16] (Section 2.1). The
latter model is then merged with a joint CTC-attention [5] training
procedure (Section 2.2.1), based on an encoder-decoder architecture
[9] (Section 2.2.2).

2.1. Processing raw waveforms with SincNet

Traditional parametric CNNs operate over the raw waveform by per-
forming multiple time-domain convolutions between the input signal
and a certain finite impulse response [19] as:

1Code is available at: https://github.com/TParcollet/E2E-SincNet



y[n] = x[n]× f [n] =
l=0∑
L

x[l].f [n− l], (1)

with x[n] a part of the speech signal, f [n] a filter of length L, and
y[n] the output finally filtered. In this case, all the elements of f
are learnable parameters. SincNet proposes to replace f with a pre-
defined function g that only depends on much fewer parameters to
describe its behavior. In [16], the authors implemented g as a filter-
bank composed of rectangular bandpass filters. Such function can
be written in the time domain as:

g[n, f1, f2] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n), (2)

with f1 and f2 the two learnable parameters that describe the low
and high cutoff frequencies of the bandpass filters, and sinc(x) =
sin(x)

x
. Such parameters are randomly initialized in the interval

[0, fs
2
], with fs equal to the input signal frequency sampling. It is

also important to notice that g is smoothed based on the Hamming
window [20].

Other definitions of the filter g have been proposed including
triangular, Gammatone, and Gaussian filters [21] demonstrating su-
perior performances over Eq. 2 due to better filter responses to the
signal. As a matter of fact, SincNet allows an important flexibility to
efficiently enhance traditional acoustic-based CNNs with prior and
well-investigated knowledge. Finally, SincNet filters are facilitating
the interpretability of the model by being easily extracted and ap-
plied over any signal for further investigations of the transformations
[16, 22, 21].

Unfortunately, SincNet has only been investigated with a mere
fully-connected DNN based on a hybdrid DNN-HMM setup [17,
21]. We propose to connect SincNet to a recurrent encoder-decoder
structure trained in a complete E2E manner following the joint CTC-
attention procedure [5].

2.2. Joint CTC-attention models

2.2.1. Connectionist Temporal Classification

In E2E ASR systems, the task of sequence-to-sequence mapping
from an input acoustic signal X = [x1, ..., xn] to a sequence of
symbols T = [t1, ..., tm] is complex due to: 1) X and T could be in
arbitrary length; 2) The alignment between X and T is unknown in
most cases; 3) T is usually shorter than X in terms of symbols.

To alleviate these problems, connectionist temporal classifica-
tion (CTC) has been proposed [23]. First, a softmax is applied at
each timestep, or frame, providing a probability of emitting each
symbol X at that timestep. This probability results in a symbol se-
quences representation P (O|X), with O = [o1, ..., on] in the latent
spaceO. A blank symbol ′−′ is introduced as an extra label to allow
the classifier to deal with the unknown alignment. Then, O is trans-
formed to the final output sequence with a many-to-one function z(.)
defined as follows:

z(o1, o2,−, o3,−)
z(o1, o2, o3, o3,−)
z(o1,−, o2, o3, o3)

 = (o1, o2, o3). (3)

Consequently, the output sequence is a summation over the
probability of all possible alignments between X and T after apply-
ing the function z(O). Accordingly to [23] the parameters of the

models are learned based on the cross entropy loss function:∑
X,T∈train

− log(P (O|X)). (4)

During the inference, a best path decoding algorithm is performed.
Therefore, the latent sequence with the highest probability is ob-
tained by performing the argmax of the softmax output at each
timestep. The final sequence is obtained by applying the function
z(.) to the latent sequence.

2.2.2. Attention-based encoder-decoder

Conversely to CTC, encoder-decoder models [9] do not suffer
from a forced many-to-one mapping. Indeed, the input signal
X = [x1, ..., xn] is entirely consumed by a first encoder neural
network (e.g. a recurrent neural network), before being fed to a sec-
ond one that is free to emit any number of outputs T = [t1, ..., tm]
starting from the information contained in the last latent space of
the encoder. Major bottlenecks are therefore related to the ability
of the encoder to map correctly an entire sequence to an arbitrary
latent space, and to the decoder that is not aware of the sequential
order of the input signal. To alleviate these issues, attention-based
encoder-decoder have been proposed [9].

From a high-level perspective, an attention-based decoder is able
to look over the complete set of the hidden states generated by the
encoder, making it feasible to “choose” the relevant information in
the time-domain [9]. More precisely, an attention-based encoder-
decoder consists of two RNNs. The encoder part remains mostly
unaltered and maps an input sequence of arbitrary length n, X =
[x1, ..., xn] to n hidden vectors h, (h1, ..., hn). Then, the attention-
decoder generates m output distributions O = [o1, ..., om] corre-
sponding to m timesteps, by attending to both the n encoded h and
the previously generated token ot−1. Two special tokens, denot-
ing the start-of-sentence and end-of-sentence are added to integrate
boundaries. The loss function is nearly identical to CTC, except that
a condition on the previous ground-truth token (otrutht−1 ) is added [5]:

Lenc,dec =

m∑
t=1

− log(P (ot|xt, otrutht−1 )). (5)

Following [5], our proposed E2E model relies on a location-
based attention method [24]. The attention weight vector at time
step t named at identifies the focus location in the entire encoded
hidden sequence h at time step t with a context vector ct:

ct =
∑
i

at,ihi, at,i =
exp(γet,i)

m∑
k=1

exp(γet,k)
, (6)

γ is the sharpening factor [25] and et,k relates the importance or
energy of the k annotation vector for predicting the i output token.
In the case of a location-based attention, et,k is computed as:

et,k = wT tanh(Wst−1 + vhk + U(F ∗ at−1) + b, (7)

with w, W ,V ,F ,Y and b are different trainable parameters, st−1 is
the hidden state of the decoder at the previous time step, and ∗ is the
convolution product. It is important to note that the implementation
of e varies accordingly to the type of attention mechanism employed
[9]. Then, the decoder generates an output token ot from an input
vector based on both the context vector ct and the previous state
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Fig. 1. Illustration of the proposed E2E-SincNet. The batch dimension is omitted for readability. The raw signal is first encoded with a
SincNet layer, followed by multiple 1D convolutions and a bidirectional RNN. Then a CTC and an attention-based decoders emit a sequence
of text symbols and are trained jointly.

st−1 alongside with updating the current state st following RNNs
equations with st−1, ct and ot. Unfortunately, ASR systems solely
relying on an attention mechanism are highly perturbed by noisy
data that generate wrong alignments [5]. Furthermore, it has been
shown that it is difficult to train such models from scratch on wide
input sequences [25, 9].

2.2.3. Joint CTC-attention

To overcome the limitations of both CTC training and attention-
based encoder-decoder models and to benefit from their strengths,
[5] introduced the joint CTC-attention paradigm. The key idea of
the latter method relies on the introduction of the CTC loss as an
auxiliary task to the attention-based encoder-decoder training. More
precisely, both losses are combined and controlled with a fixed hy-
perparameter λ (0 ≤ λ ≤ 1) as:

Ljoint = (1− λ)Lenc,dec + λLCTC . (8)

2.3. E2E-SincNet

SincNet has only been combined with mere feed-forward NNs [16,
17], while the joint CTC-attention approach has only been applied
to pre-computed acoustic features such as MFCCs and Mel-filter-
banks [5, 18]. We propose to combine SincNet to the latter training
procedure in a efficient, interpretable and fully E2E ASR approach
(Figure 1).

The E2E architecture is composed of three components: 1) An
encoder that operates over the raw audio signal with a first SincNet
layer followed by N one-dimensional convolutional layers. The la-
tent features are then consumed by a traditional bidirectional RNN.
2) A simple CTC decoder that produces a token for each time step
encoded. 3) An attention-based decoder that looks out over the en-
tire encoded hidden sequence to output the right symbol. The model
is trained following the joint CTC-attention loss function (Eq. 8).

3. EXPERIMENTS

In this Section, E2E-SincNet is compared to other state-of-the-art
end-to-end ASR systems with two different speech recognition tasks.
First, datasets alongside with pre-computed and raw acoustic fea-
tures are detailed (Section 3.1). Then, baselines and proposed mod-
els architectures are described (Section 3.2). Finally, we report and
discuss the results in Section 3.3.

3.1. Speech recognition datasets and acoustic features

E2E-SincNet is evaluated in two different tasks of phoneme recog-
nition with the TIMIT dataset, and word recognition with the Wall
Street Journal corpus.

3.1.1. The TIMIT phoneme recognition task

The TIMIT [26] dataset is composed of a standard 462-speaker
training dataset, a 50-speakers development dataset and a core test
dataset of 192 sentences for a total of 5 hours of clean speech. Dur-
ing the experiments, the SA records of the training set are removed
and the development set is used for early stopping. The accuracy is
reported in terms of Phoneme Error Rate (PER). TIMIT is consid-
ered as a challenging task for E2E systems due to its very limited
amount of available training data (less than 5 hours).

3.1.2. The Wall Street Journal speech recognition task

Only the full “train-si284” dataset is considered as a training set (81
hours), due to the fact that the models have already been evaluated
on the smaller TIMIT dataset. The usual “test-eval92” is used at test-
ing time, while “test-dev93” is considered as a validation dataset.
The accuracy is reported in terms of Word Error Rate (WER).



3.1.3. Acoustic features

In the original SincNet proposal [16], chunks of raw signal are cre-
ated every 400ms with a 10ms overlapping. Instead, we propose to
split the waveform of each speech sentence into blocks of 25ms. In-
deed, [16] introduce a SincNet followed by a DNN that requires both
right and left contexts to be trained properly. Our approach relies
on a combination of SincNet with a RNN allowing the latter con-
text to be captured within the recurrent connections, making it fea-
sible to drastically reduce both the input dimension and the VRAM
consumption at training time (i.e. by a factor of 5). Then, other
E2E systems usually process either pre-computed acoustic features.
Therefore, 23 and 80 Mel-filter-banks are extracted for the TIMIT
and WSJ datasets respectively, based on windows of size 25ms with
a 10ms overlapping.

3.2. Models architectures

Two different E2E ASR models operating on the raw waveform
and relying on the encoder-decoder approach with the joint CTC-
attention training scheme are introduced (see Figure 1).

E2E-SincNet. The encoder is made of a specific SincNet layer
and 3 one-dimensional convolutional layers with 256 − 128 − 128
filters, followed by a bidirectional LSTM composed with 4 or 6 lay-
ers of size 512 for the TIMIT and WSJ tasks respectively. A one-
dimensional maxpooling of length 3 is applied after the convolu-
tional and SincNet layers to reduce the signal dimension. In [16],
the authors introduced a SincNet layer composed of 128 filters of
size 251. We propose to increase the number of filters to 512 and
to decrease their size to 129 to enhance the local resolution of the
filters, better fitting to the task of speech recognition. Finally, the
decoder relies on a simple attention layer of size 512 combined with
the CTC loss (Section 2.2.3).

E2E-CNN. This architecture is proposed to highlight the impact
of the SincNet layer in E2E-SincNet. More precisely, E2E-CNN is
identical to E2E-SincNet but with a traditional convolutional layer
with 512 filters to replace the SincNet one.

Models are trained based on the Adadelta optimizer with vanilla
hyperparameters [27] for 20 and 15 epochs during the TIMIT and
WSJ tasks respectively. The joint CTC-attention loss control hyper-
parameter λ (Eq. 8) is set to 0.5 for the TIMIT experiments and
decreased to 0.2 with WSJ. No dropout is applied and the results
observed on the test dataset are reported with respect to the best per-
formances obtained on the validation dataset.

3.3. Results and discussions

Table 1 reports the results obtained by our approaches compared to
a more traditional E2E model operating on Mel-filter-banks on the
TIMIT dataset. First, it is worth underlining that the E2E-SincNet
obtains the best performances with a PER of 19.3% on the test
dataset, compared to 20.5% for the baseline and 21.1% for the non-
SincNet alternative representing a relative improvement of 1.2%
and 1.3% respectively. Unfortunately, TIMIT is a very challenging
task for E2E systems due to the small amount of available training
data (less than 5 hours), resulting in worse performances in com-
parison to hybrid DNN-HMM ASR systems [2]. Therefore, it is of
crucial interest to scale the E2E-SincNet model to a larger dataset to
validate its suitability to real-world tasks.

Table 2 reports the performances obtained by various SOTA E2E
models on the WSJ dataset by integrating a 3-gram recurrent lan-
guage model (RNNLM) [18]. “Jasper”[8] uses a transformerXL lan-
guage model. First, the proposed E2E-SincNet obtains a top-of-line

Table 1. Results obtained with different E2E ASR systems on the
TIMIT phoneme recognition tasks. “Fea.” details the type of input
features employed, and “Valid.” denotes the validation dataset.
Results are expressed in Phoneme Error Rate (i.e. lower is better).

Models Fea. Valid. % Test %
E2E-CNN RAW 18.9 21.1

ESPnet (VGG) [18] FBANK 17.9 20.5
E2E-SincNet RAW 17.3 19.3

WER of 4.5% on the “test eval92” dataset, outperforming all the
baselines. Indeed, a previous best score of 5.9% was reported in
[12], highlighting a relative improvement of 1.2%.

Table 2. Results obtained with different E2E ASR systems on the
WSJ dataset. “Fea.” details the type of input features employed,
“Valid.” denotes the validation dataset, “-ASG” is the auto segmen-
tation criterion (i.e a variation of CTC) and “-Att.” is attention only.
Results are expressed in Word Error Rate (i.e. lower is better).

Models Fea. Valid. Test
BiGRU-Att. [9] FBANK - 9.3
Wav2Text [28] FBANK 12.9 8.8

Jasper [8] FBANK 9.3 6.9
E2E-CNN RAW 9.8 6.5

ESPnet (VGG) [18] FBANK 9.7 6.4
CNN-GLU-ASG [7] RAW 8.3 6.1

SelfAttention-CTC [12] FBANK 8.9 5.9
E2E-SincNet RAW 7.8 4.7

The E2E-SincNet outperforms the E2E-CNN with a relative
gain of 1.8% on both TIMIT and WSJ task. This demonstrates
the efficacy of the SincNet layer to learn an expressive filtered
signal enabling a better and lossless latent representation of the
raw waveform. It is interesting to note that “transformer“ models
have recently obtained better performances on multiple ASR tasks
[29]. Nonetheless, transformers are a specific architecture that dif-
fer significantly from the presented models and are therefore not
considered in our benchmarks.

4. CONCLUSION

Summary. In this paper, we introduced E2E SincNet, a fully end-
to-end automatic speech recognition system able to process the raw
waveform based on an adaptation of the recent SincNet with the
powerful joint CTC-attention training paradigm. The conducted
experiments on two different speech recognition-related tasks have
demonstrated the superiority of our approach over various other E2E
systems based on both pre-computed acoustic features and the raw
waveform, achieving one of the best result observed so far with an
E2E ASR model on the Wall Street Journal dataset.
Future work. SincNet currently suffers from various issues. First, it
is important to investigate other filters to efficiently operate over the
raw signal. Then, an alternative to the maxpooling must be explored
to alleviate the risk of aliasing in the filtered signal.
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