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Abstract

The main objective of this paper is to identify themes from
dialogues of telephone conversations in a real-life customer care
service. In this task, the word semantic variability contained in
these conversations may impact the classification performance
by retaining the noise in their vectorial representation. In this ar-
ticle, we propose an original method to compensate this seman-
tic variability using the Factor Analysis (FA) paradigm, initially
designed for speech processing tasks to compensate the acous-
tic variability, mainly in Speaker Verification (SV) and Auto-
matic Speech Recognition (ASR). In our proposal, we used the
FA paradigm to estimate the semantic variability as an addi-
tive component located in a subspace of low dimension (with
respect to the super-vector space). This additive semantic vari-
ability is estimated in Factor Analysis model space. From this
estimation, a specific vector transformation is obtained and is
applied to vectors of dialogue representation. Experiments are
reported using a corpus collected in the call center of the Paris
Transportation Service. Results show the effectiveness of the
proposed representation paradigm with a theme identification
accuracy of 80.0%, showing a significant improvement with re-
spect to previous results on the same corpus.

Index Terms: Human/Human conversation representation, Se-
mantic variability, Factor analysis, Variability compensation,
Automatic classification, Latent Dirichlet Allocation.

1. Introduction

Automatic Speech Recognition (ASR) systems globally achieve
a sufficient level of performance to be used in various tasks,
such as text analysis, automatic classification or information ex-
traction. Nonetheless, particular speech conditions (conversa-
tional speech, noisy environments...) may drastically drop the
transcription accuracy, which directly affects the applications
based on the ASR outputs. Two ways are typically followed to
deal with these speech recognition errors. The first one consists
in adapting ASR systems to a targeted domain and specific con-
ditions. As a result, the transcription accuracy should increase,
but such an approach usually requires task-specific speech ma-
terials and costly manual annotations. The second way is not to
seek to correct these errors, but to propose additional solutions
to compensate them. This last solution is the one followed in
this article.
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This solution estimates a topic space, with, for example, a
Latent Dirichlet Allocation (LDA) approach [1], in which each
document may be viewed as a mixture of latent topics. Nonethe-
less, this projection of noisy documents into a clean topic space
generates a variability (called semantic variability) in the dia-
logue vectorial representation. This variability is mainly due to
the few number of words contained in each dialogue. Although
the effect of this semantic variability is limited compared to the
usually noted gain provided by this abstracted content represen-
tation, the semantic variability may degrade the dialogue repre-
sentation.

In this paper, we will call semantic variability all kinds of
variability affecting the vectorial representation of given docu-
ments. We propose a new method to compensate the semantic
variability in order to obtain a better dialogue representation.
Our proposal is based on the Factor Analysis (FA) paradigm
presented in [2]. This approach was applied in the speaker
recognition domain to model the session variability' as an ad-
ditive component. The basic idea behind this approach consists
in decomposing the speaker model into three different compo-
nents: a speaker-session independent component, a speaker de-
pendent component, and a session dependent component. This
decomposition allows to easily remove the session dependent
component which degrades the performance of speaker verifi-
cation systems.

We will apply the same paradigm (FA) to the theme identi-
fication problem. The dialogues being considered as the speak-
ers in the FA, and the semantic variability replacing the session
variability. The FA approach is used to estimate the component
of this variability in order to compensate it in the dialogue rep-
resentation. The neutralization of this variability should allow
to obtain a more robust dialogue vectorial representation.

This paper is organized as follows. The dialogue represen-
tation is described in Section 2. In Section 3, the proposed ap-
proach to model the theme of the dialogue by using the SGMM
is presented. Sections 4 and 5 report experimental results, while
Section 6 concludes this work.

2. Dialogue vectorial representation

The considered application is the identification of the major
theme of a human/human telephone conversation in the cus-
tomer care service of the RATP Paris transportation system. The
approach considered in this paper focuses on modeling the vari-

IThis term encompasses a number of phenomena including trans-
mission channel effects, transducer characteristics, environment noise,
and variability introduced by the speaker.
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ability between different dialogues expressing the same theme
C. For this purpose, it is important to select features that rep-
resent semantic contents relevant for the theme of a dialogue.
An attractive set of features for capturing possible semantically
relevant word dependencies is obtained with Latent Dirichlet
Allocation (LDA) [1], a generative probabilistic model.

A dialogue is then represented as a finite mixture over an
underlying set of topics. Given a train set of conversations, a
hidden topic space is derived and a conversation d is represented
by its probability in each topic of the hidden space. Estimation
of these probabilities is affected by a variability inherent to the
estimation of the model parameters. If many hidden spaces are
considered and features are computed for each hidden space, it
is possible to model the estimation variability together with the
variability of the linguistic expression of a theme by different
speakers in different real-life situations.

This multiple representation of a dialogue, even if the pur-
pose of the application is theme identification and a train corpus
annotated with themes is available, supervised LDA [3] is not
suitable for the proposed approach since LDA is used only for
producing different feature sets used for computing statistical
variability models.

To estimate the parameters of different hidden spaces, a vo-
cabulary V' of discriminative words is constructed as described
in [4, 5, 6]. For each theme {Ci}?zl, a set of 50 theme specific
words is identified. The same word may appear in more than
one theme vocabulary selection. All the selected words are then
merged without repetition to form V' made of 166 words.

Several techniques have been proposed to estimate the LDA
parameters, such as Variational Methods [1], Expectation Prop-
agation [7], or Gibbs Sampling [3, 8]. Gibbs Sampling is a
special case of Markov-chain Monte Carlo (MCMC) [9] and
gives a simple algorithm for approximate inference in high-
dimensional models such as LDA [8]. This overcomes the dif-
ficulty to directly and exactly estimate parameters that max-
imize the likelihood of the whole data collection defined as:
P(W|d, #() =ITgew P(W|d, ?) for the whole data col-

lection W knowing the Dirichlet parameters o and f.

The Gibbs Sampling allows us both to estimate the LDA
parameters, to represent a new dialogue d with the n™ topic
space I'? of size ¢, and to obtain a feature vector an of the

topic representation of d. The k" feature de’? = P(z|d)
(where 1 < k < @) is the probability of topic z;; is generated
by the unseen dialogue d in the nt topic space of size ¢ and
V;Zf = P(w;|z1,) is the vector representation of a word w; into
i,

In the LDA technique, the topic z is drawn from a multi-
nomial over 6 which is drawn from a Dirichlet distribution over
o . Thus, a set of p topic spaces {I'% }7 _, of size g are learned
using LDA by varying the topic distribution parameter o =
[a1,...,a4]" to obtain p topic spaces of size gq. The stan-
dard heuristic is a; = % [3], which for the setup of the nth

topic space (1 < n < p) would be &, ..., a,]t with

q times

an = 3 X %0.
The larger a, (an > 1) is, the more uniform P(z|d) will

be. Nonetheless, this is not what we want: different dialogues
have to be associated with different topic distributions. In the
meantime, the higher the « is, the more the draws from the
Dirichlet will be concentrated around the mean, which, for a
symmetric alpha vector, will be the uniform distribution over q.

The number of topics ¢ is fixed to 50, and 500 topic spaces are
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built (p = 500) in our experiments. Thus, «,, varies between a
low value (sparse topic distribution cv; = 0.002) to 1 (uniform
Dirichlet oig = 1).

The next process allows to obtain a homogeneous repre-
sentation of the dialogue d for the n topic space I'Y. The
feature vector an of the dialogue d is mapped into the com-
mon vocabulary space V' composed with a set of discrimina-
tive words [4, 5, 6] to obtain a new feature vector [10] V", =
[P(w|d)ra lwev of size 166 for the n™ topic space T'? of size
g where the i (0 < i < 166) feature is:

z il n
Vit = Y Pawilzf)P(RI) = Y Vi x vpE
k=1 k=1

3. Factor analysis for semantic variability
compensation

In this section, we present a new method of semantic variability
compensation of automatically transcribed dialogues. Our idea
is inspired from the acoustic variability compensation success-
fully applied for speech processing (speech recognition [11],
speaker verification [12], and language identification [13]) based
on the Factor Analysis (FA) paradigm. The basic idea of this
approach is to project a vector representing a noisy speech in a
subspace assumed to only contain the noise part. Hence, this
projected component can be subtracted from the noisy vector to
obtain a clean speech vector.

3.1. Compensation of nuisance variability for speech pro-
cessing

In the context of speech processing, the FA process is performed
in the cepstral domain, assuming that the whole cepstral space is
modeled by a Gaussian Mixture Model, called Universal Back-
ground Model (UBM). The useful information i (speaker in the
speaker verification context [12], phoneme in the ASR case [11])
can be modeled by a GMM derived from the UBM using a MAP
adaptation of the UBM vector means. The concatenation of the
GMM means allows to obtain a very high dimensional vector,
called a super-vector.

The FA paradigm gives the possibility to model the use-
less information h (environment variability, background noise,
speaker-variability, channel-variability...) in a subspace of low
dimension R, in order to remove it from the noisy super-vector.
Let M be the number of Gaussians in the GMM-UBM. The
GMM-UBM is trained on a large amount of data. Let m be the
super-vector (of dimension M D where D is the dimension of
the acoustic space) obtained by the concatenation of all means
in GMM-UBM. By using the FA paradigm, the super-vector
m; 5, (random variable) can be decomposed into three different
components:

my,; =m+ Dy, +Uxy, ; (D

In details, y, models the useful information, which is a vec-
tor of dimension M D, and Ux is the nuisance variability com-
ponent. X;, are the nuisance variability factors (vector of dimen-
sion R). Both y, and xj, are assumed to be normally distributed
among N (0, ). D is a diagonal matrix (M D x M D) so that
DD’ is the a priori covariance matrix of the useful component.
D satisfies the equation I = 7D*S 7' D, where 7 is the rele-
vance factor required in the standard MAP adaptation. U is a
rectangular matrix (M D x R) so that UU" is the a priori co-
variance matrix of the nuisance variability component random



vector. The algorithm that presents the adopted strategy to esti-
mate different components of the equation 1 is detailed in [14].

As shown in equation 1, the success of the Factor Analysis
modeling mainly depends on the assumptions that the nuisance
variability is located in a subspace of low dimension (dimension
R) and that the nuisance variability is additive (Ux). Once the
different component of the equation 1 is finite. The nuisance
variability component Ux is used in subtracting of this variabil-
ity from the vector dialogue representation from trains and test
data.

3.2. Semantic variability compensation for automatic theme
identification task

In this work, we apply the Factor Analysis paradigm in the con-
text of the automatic theme identification. In this task, ASR
transcriptions are used. Since the transcription quality may be
poor, we propose to represent the dialogue in a more abstract
representation using a topic space. This abstract representation
of the dialogue spoken content allows to limit the negative im-
pact of ASR errors. Nonetheless, the projection of the dialogues
in a topic space generates a variability due to the estimation
of the LDA parameters. Their estimation with the Gibbs Sam-
pling [15] takes into account all words contained in the vocab-
ulary. Indeed, for an unseen dialogue d, the estimation of the
probability that a topic z was generated by d adds a residual se-
mantic variability due to the fact that p(z|d) is estimated for all
words in the vocabulary, and not only for the words contained in
d. This variability degrades the quality of the dialogue represen-
tation which could affect the theme identification performance.
For this reason we propose to use the Factor Analysis approach
to estimate and remove this variability in order to improve the
quality of the dialogue representation.

3.2.1. Semantic variability estimation

At this stage, the dialogues are represented by vectors. A GMM-
UBM is firstly estimated using a train corpus (a set of dialogue
vectors). This model is defined as follows:

UBM = (ag,mg,3g) 2)

where ag, my and X, are respectively the weight, the mean
and the covariance matrix of the ¢'* Gaussian. The GMM-
UBM models the set of training dialogues with the semantic
variability contained in these dialogues.

Let N be the dimension of the dialogue representation (vec-
torial representation), M is the number of Gaussians in the
GMM-UBM, and R is the chosen dimension of the semantic
variability subspace. Let v be the semantic variability in the
dialogue representation d. The super-vector m,, 4 of this dia-
logue in the presence of variability v can be obtained using the
following equation:

3

where m is the super-vector of the GMM-UBM. Ux is the
semantic variability component. The columns of the U (a M D x
R matrix) are the generative vectors of the semantic variability.
X(v,d) 18 the semantic variability vector in the subspace gener-
ated by the columns of the matrix U. The vector y,,;, models the
dialogue d and D is a M D x M D diagonal matrix. The algo-
rithm to estimate the different components is detailed in [14].

The variability component Ux have to be compensated in

m,,¢ = m+ Dy, + Ux, 4

the vectorial dialogues representation. In next section, we present
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the way that this component is subtracted from the differants
vectors dialogue representation.

3.2.2. Semantic variability compensation

In this step, we use the U matrix, estimated in the last section,
to compensate the semantic variability v from the dialogue rep-
resentation. The same matrix U was used for all dialogue rep-
resentations contained in the train and test corpus. The clean
dialogue representation Ry is obtained by using the following
equation:

M
Ry=Ra—Y () {U-xya}y
g=1

where M is the number of Gaussians in the GMM-UBM,

and 74 (t) is the a posteriori probability of Gaussian g given

by the dialogue representation R4. These probabilities are es-

timated by using the GMM-UBM model. Ux, 4 is the addi-

tive semantic variability component estimated on the original

dialogue representations. The clean dialogue representation ob-

tained R4 will be evaluated in the context of theme identifica-
tion.

C)

4. Experimental protocol in the theme
classification task

In the previous section, we proposed a method to compensate
the semantic variability contained in the dialogue vector rep-
resentation. We present in this section the corpus used in our
experiments, as well as the classical Mahalanobis distance and
EFR standardization approach that will be used in the classifi-
cation of the topic-based dialogue representation.

4.1. The DECODA project

The experiments on theme identification are performed using
the DECODA project corpus [16]. This corpus is composed
of 1,067 telephone conversations split into a train set (740 dia-
logues) and a test set (327 dialogues), and manually annotated
with 8 conversation themes: problems of itinerary, lost and
found, time schedules, transportation cards, state of the traffic,
fares, infractions and special offers. The set of 500 topic spaces
needed for these experiments (see Section 2), is built with the
use of Mallet Java implementation of LDA.

The Automatic Speech Recognition (ASR) system used for
the experiments is LIA-Speeral [17] with 230,000 Gaussians in
the triphone acoustic models. Model parameters were estimated
with maximum a posteriori probability (MAP) adaptation from
150 hours of speech in telephone condition. The vocabulary
contains 5,782 words. A 3-gram language model (LM) was ob-
tained by adapting with the transcriptions of the train set a basic
LM. An initial set of experiments was performed with this sys-
tem resulting in an overall Word Error Rate (WER) on the train
set of 45.8% and on the test set of 58.0%. These high WER
are mainly due to speech disfluencies and to adverse acoustic
environments for some dialogues when, for example, users are
calling from train stations or noisy streets with mobile phones.
Furthermore, the signal of some sentences is saturated or of low
intensity. A “stop list” of 126 words® was used to remove un-
necessary words which results in a WER of 33.8% on the train
set and of 49.5% on the test set.

Zhttp://mallet.cs.umass.edu/
3http://code.google.com/p/stop-words/



4.2. Mahalanobis distance

Given a new observation z, the goal of the task is to identify
the theme belonging to x. The probabilistic approaches ignore
the process by which vectors were extracted, and they pretend
instead they were generated by a prescribed generative model.
The representation mechanism of the dialogue is ignored and
is regarded as an observation from a probabilistic generative
model. The two most simple assumptions are those of the ho-
moscedastic Gaussian Bayesian classifier [18]: (i) the Gaus-
sianity of the theme classes and (ii) the equality of the class
covariances.

The Gaussian classifier is based on the Bayes decision rule
and is combined with a scoring metric to assign a dialogue d
with the most likely theme ¢. Given a training dataset of dia-
logues D, let W denote the within dialogue covariance matrix
defined by:

nt

(4~ ) («F -7)" ®

where Wy is the covariance matrix of the k" theme Cj,
n: is the number of utterances for the theme k, n is the total
number of dialogues in the training dataset, and Ty, is the mean
of all dialogues x¥ of the k™ theme.

Each dialogue does not contribute to the covariance in an
equivalent way. For this reason, the term “* is introduced in
equation 5.

If homoscedasticity (equality of the class covariances) and
Gaussian conditional density models are assumed, a new obser-
vation z from the test data can be assigned to the most likely
theme Kpayes Using the Gaussian classifier based on the Bayes
decision rule:

1 X
a2

K t
nt
W = E —Wyg =
n -
k=1 k=1 1i=0

kBayes = arg m]?X N (J} | Tk, W)

= argmgx{f% (z fﬁ)t w! (x —m%) + ak}
(6)

where Ty, is the centroid (mean) of theme k, W is the within
theme covariance matrix defined in equation 5, A denotes the
normal distribution and ay is the log prior probability of the
theme membership defined as ar = log (P(C%)). It is worth
noting that, with these assumptions, the Bayesian approach is
similar to the Fisher’s geometric approach: z is assigned to the
nearest centroid’s class, according to the Mahalanobis [19] met-
ric of W 1:

1
kBayes = argm?x{—EH:r—TkH%vq —|—ak} @)

4.3. Vector standardization

Random variability have to be theoretically normally distributed
among N (0, 1), the vectors are standardized. Two methods
showed improvements for speaker verification: Within Class
Covariance Normalization (WCCN) [12] and Eigen Factor Ra-
dial (EFR) [20]. This last method includes length normaliza-
tion [21]. Both of these methods dilate the total variability space
as the mean to reduce the within-class variability. In this paper,
the EFR technique is chosen to standardize the dialogue repre-
sentation. The standardization operation is as follow:
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T
—_— 8
'Y ®)

Where X is the covariance matrix of the random variable x.

5. Results

Experiments are conducted using the multiple topic spaces esti-
mated with a LDA approach (various number of topic spaces).
From these multiple topic space configurations, the classical ap-
proach is to find the one that allows to reach the best theme
classification performance. The proposed variability compen-
sation method is applied in each topic-based representation of a
dialogue and is compared with dialogue representation without
variability compensation. The compensation is applied with dif-
ferent ranks R of the matrix U and different numbers of Gaus-
sian M in the GMM-UBM. In our experiments, the mean Ma-
halanobis score is computed as well as the EFR standardization
in each case (filtered and non-filtered).

First experiments were made using the non-filtered vector
representation of dialogues. This standard representation al-
lowed to obtain an average accuracy* of 76.9%, which consti-
tutes our baseline [4]. We then computed the average score ob-
tained by the compensated vector representation, using different
configurations (see Table 1). All of the average scores reported
in Table 1 outperform our baseline result. We can point out that
the best average score is obtained using 16 Gaussians in the
GMM-UBM model and a rank(U) = 60 configuration, with
a gain of 3.3 points in comparison to the basic vector represen-
tation. Finally, we can conclude that Factor Analysis, applied
in the context of text classification, can significantly reduce the
vector size while improving the classification results.

Number of Gaussians
in GMM-UBM
Rank of U 16 32 64
60 80.0 | 77.2 78.2
80 79.7 | 78.7 78.2
100 79.2 | 78.2 78.0

Table 1: Theme classification average accuracy (%) with com-
pensated variability vectors.

6. Conclusions

In this paper, we proposed to apply a variability compensation
approach, originally designed for speaker recognition problems,
to improve the vectorial conversation representation. Indeed,
the Factor Analysis space representation has never been applied
to textual content, such as words or topic-based representation
features. This compensated representation could then be ap-
plied to any task that uses textual vectorial representation.

We applied this approach to a theme identification classi-
fication task, and showed that this method allows to remove
the low residual variability (semantic variability). As a con-
sequence, results have been significantly improved in terms of
average accuracy among imperfect transcriptions. A final gain
of 3.1 points has then been noticed. These encouraging results
give some good reasons to continue the adaptation of speech
processing techniques into the natural language processing field
such as document categorization, keywords extraction.... In a
future work, we will use these vector representations to build
more robust textual document representations.

4 Average score obtained using the different topic space configura-
tions (see section 4)
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