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Abstract
The performance of Automatic Speech Recognition (ASR)

systems drops dramatically when used in noisy environments.
Speech analytics suffer from this poor quality of automatic tran-
scriptions. In this paper, we seek to identify themes from dia-
logues of telephone conversation services using multiple topic-
spaces estimated with a Latent Dirichlet Allocation (LDA) ap-
proach. This technique consists in estimating several topic mod-
els that offer different views of the document. Unfortunately,
such a multi-model approach also introduces additional vari-
abilities due to the model diversity. We propose to extract the
useful information from the full model-set by using an i-vector
based approach, previously developed in the context of speaker
recognition. Experiments are conducted on the DECODA cor-
pus, that contains records from the call center of the Paris Trans-
portation Company. Results show the effectiveness of the pro-
posed representation paradigm, our identification system reach-
ing an accuracy of 84.7%, with a gain of 3.3 points compared
to the baseline.
Index Terms: human/human conversation, speech recognition,
Latent Dirichlet Allocation, i-vectors, joint factor analysis

1. Introduction
Automatic Speech Recognition (ASR) systems frequently fail
on noisy conditions and high Word Error Rates (WER) make
difficult the analysis of the automatic transcriptions. Speech an-
alytics suffer from these transcription issues that may be over-
come by improving the ASR robustness or/and the tolerance of
speech analytic systems to ASR errors. This paper proposes a
new method to improve the robustness of speech analytics by
combining a semantic multi-model approach and a nuisance re-
duction technique based on the i-vector paradigm.

This method is evaluated in the application framework of
the RATP call centre (Paris Public Transportation Authority),
focusing on the theme identification task [1].

Telephone conversation is a particular case of hu-
man/human interaction whose automatic processing encoun-
ters many difficulties, especially due to the speech recognition
step required to obtain the transcription of the speech contents.
First, the speaker behavior may be unexpected and the train/test
mismatch may be very large. Second, speech signal may be
strongly impacted by various sources of variability: environ-
ment and channel noises, acquisition devices. . .

Topics are related to the reason why the customer called. 8
classes corresponding to the main customer requests are consid-
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ered (lost and founds, traffic state, timelines. . . ). Additionally
to the classical problems in such adverse conditions, the topic
identification system has also to face issues due to class prox-
imity. For example, a lost & found request is related to itinerary
(where the object was lost?) or timeline (when?), that could ap-
pear in most of the classes. In fact, these conversations involve
a relatively small set of basic concepts related to transportation
issues.

An efficient way to tackle both ASR robustness and class
ambiguity could be to map dialogues into a topic space abstract-
ing the ASR outputs. Then, dialogue categorization is achieved
in this topic space. Numerous unsupervised methods for topic-
space estimate were proposed in the past. Latent Dirichlet Al-
location (LDA) [2] was largely used for speech analytics; one
of its main drawback is the tuning of the model, that involves
various meta-parameters such as the number of classes (that
determines the model granularity), word distribution methods,
temporal spans. . . If the decision process is highly dependent on
these features, the system performance could be quite unstable.

Our proposal is to estimate a large set of topic spaces by
varying the LDA meta-parameters. The mapping of the docu-
ment into each of the resulting spaces could be considered as a
particular view of the spoken contents. In the topic identifica-
tion context, this multiple representation of the same dialogue
improves the tolerance of the identification system to the recog-
nition errors [3, 4].

On the other hand, multi-view approaches introduce an ad-
ditional variability due to the diversity of the views. We propose
to reduce this variability by using a factor analysis technique,
which was developed in the field of speaker identification. In
this field, the factor analysis paradigm is used as a decompo-
sition model that enables to separate the representation space
into two subspaces containing respectively useful and useless
information. The general Joint Factor Analysis (JFA) paradigm
considers multiple variabilities that may be cross-dependent.
Thereby, JFA [5] representation allows to compensate the vari-
ability within session of a same speaker. It is an extension of the
GMM-UBM (Gaussian Mixture Model-Universal Background
Model) models [6]. In [7], the authors extract from the GMM
super-vector, a compact super-vector named i-vector (i for iden-
tification). The aim of the compression process (i-vector extrac-
tion) is to represent the super-vector variability in a low dimen-
sional space. Although this compact representation is widely
used in speaker recognition systems, this method was not yet
used in the field of text classification.

In this paper, we propose to apply factor analysis to com-
pensate nuisible variabilities due to the multiplication of LDA
models. Furthermore, a normalization approach, called c-
vector (c for classification), to condition dialogue representa-
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tions (multi-model and i-vector) is proposed. This multiple
representation of a transcription even if the purpose of the ap-
plication is theme identification and an annotated train corpus
is available, supervised LDA [8] is not suitable for the proposed
approach since LDA is used only for producing different feature
sets used for computing statistical variability models.

Two methods showed improvements for speaker verifica-
tion: within Class Covariance Normalization (WCCN) [7] and
Eigen Factor Radial (EFR) [9] (that includes length normaliza-
tion [10]). Both of these methods dilate the total variability
space as the mean to reduce the within class variability. In
our multi-model representation, the within class variability is
redefined according to both dialogue content (vocabulary) and
topic space characteristics (words distribution among the top-
ics). Thus, the speaker is represented by a theme, and the
speaker session is a set of topic-based representations (frames)
of a dialogue (session).

The transcription representation is described in section 2.
Section 3 introduces the i-vector compact representation. Sec-
tions 4 and 5 report experiments and results before concluding
in section 6.

2. Multi-view representation of automatic
transcriptions in a homogenous space

The approach considered in this paper focuses on modeling the
variability between different views of a same transcription. For
this purpose, it is important to select features that represent se-
mantic contents relevant for this transcription. An attractive set
of features for capturing possible semantically relevant word de-
pendencies is obtained with LDA [2], a generative probabilistic
model for collections of discrete data such as text corpora.

A transcription is then represented as a finite mixture over
an underlying set of topics. Given a train set of transcriptions,
a hidden topic space is derived and a transcription d is repre-
sented by its probability in each hidden space topic. Estimation
of these probabilities is affected by a variability inherent to the
estimation of the model parameters. If many hidden spaces are
considered and features are computed for each hidden space,
it is possible to model the estimation variability together with
the variability of the linguistic expression of a theme by differ-
ent speakers in different real-life situations. Section 3 describes
how the i-vector representation substantiates this claim.

In order to estimate the parameters of different hidden
spaces in a homogenous space, a vocabulary V of discrimi-
native words is constructed as described in [11, 3, 4]. Several
techniques have been proposed to estimate the LDA parameters,
such as Variational Method [2], Expectation-propagation [12]
or Gibbs Sampling [8, 13]. Gibbs Sampling is a special case
of Markov-chain Monte Carlo (MCMC) [14] and gives a sim-
ple algorithm for approximate inference in high-dimensional
models such as LDA [13]. This overcomes the difficulty to di-
rectly and exactly estimate parameters that maximize the likeli-

hood of the whole data collection defined as: P (W |−→α ,
−→
β ) =∏

−→w∈W P (−→w |−→α ,
−→
β ) for the whole data collection W knowing

the Dirichlet parameters −→α and
−→
β .

Gibbs Sampling allows both to estimate the LDA param-
eters, in order to represent a new transcription d with the nth

topic space Γq
n of size q, and to obtain a feature vector V zn

d of

the topic representation of d. The kth feature V
znk
d = P (znk |d)

(where 1 ≤ k ≤ q) is the probability of topic znk generated by
the unseen transcription d in the nth topic space of size q, and
V wi
zn
k
= P (wi|znk ) is the vector representation of a word wi into

Γq
n.

In the LDA technique, the topic z is drawn from a multi-
nomial over θ which is drawn from a Dirichlet distribution
over −→α . Thus, a set of p topic spaces {Γq

n}pn=1 of size q is
learned using LDA by varying the topic distribution parameter−→α = [α1, . . . , αq]

t. The standard heuristic is αi = 50
q

[8],

which for the setup of the nth topic space (1 ≤ n ≤ p) would
be −→αn[αn, . . . , αn︸ ︷︷ ︸

q times

]t with αn =
n
p
× 50

q
.

The larger αn (αn ≥ 1) is, the more uniform P (z|d) will
be (see figure 1). Nonetheless, this is not what we want: dif-
ferent transcriptions have to be associated with different topic
distributions. In the meantime, the higher the α is, the more the
draws from the Dirichlet will be concentrated around the mean
(see figure 1 with α = 20), which, for a symmetric alpha vector,
will be the uniform distribution over q. The number of topics q
is fixed to 50, and 500 topic spaces are built (p = 500) in our
experiments. Thus, αn varies between a low value (sparse topic
distribution α1 = 0.002) to 1 (uniform Dirichlet αp = 1).
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Figure 1: Dirichlet distribution with a varied αn.

The next process allows to obtain a homogeneous repre-
sentation of the transcription d for the nth topic space Γq

n.
The feature vector V zn

d of d is mapped into the common vo-
cabulary space V composed with a set of |V | discriminative
words [11, 3, 4] to obtain a new feature vector [15] V w

d,n =

{P (w|d)Γq
n
}w∈V of size |V | for the nth topic space Γq

n of size

q where the ith (0 ≤ i ≤ |V |) feature is:

V wi
d,n =

q∑
k=1

P (wi|znk )P (znk |d) =
q∑

k=1

V wi
zn
k
× V

znk
d

3. Compact representation
In this section, an i-vector-based method to represent automatic
transcriptions, called c-vector, is presented. Initially introduced
for speaker recognition, i-vectors [5] have become very pop-
ular in the field of speech processing and recent publications
show that they are also reliable for language recognition [16]
and speaker diarization [17]. I-vectors are an elegant way of re-
ducing the large-dimensional input data to a small-dimensional
feature vector while retaining most of the relevant information.
The technique was originally inspired by the Joint Factor Anal-
ysis framework [18]. Hence, i-vectors convey the speaker char-
acteristics among other information such as transmission chan-
nel, acoustic environment or phonetic content of speech seg-
ments. Next sections describe the c-vector extraction process,
the vector transformation with the EFR method, and the Maha-
lanobis metric.
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3.1. Total variability space definition

The i-vector extraction could be seen as a probabilistic com-
pression process that reduces the dimensionality of speech
super-vectors according to a linear-Gaussian model. The speech
(of given speech recording) super-vector ms of concatenated
GMM means is projected in a low dimensionality space, named
Total Variability space, with ms = m + Txs, where m is
the mean super-vector of the UBM1. T is a low rank matrix
(MD × R), where M is the number of Gaussians in the UBM
and D is the cepstral feature size, which represents a basis of
the reduced total variability space. T is named Total Variability
matrix; the components of xs are the total factors which repre-
sent the coordinates of the speech recording in the reduced total
variability space called i-vector.

3.2. From i-vector speaker identification to c-vector textual
document classification

The proposed approach uses i-vectors, called c-vectors, to
model transcription representation through each topic space in a
homogeneous vocabulary space. These short segments are con-
sidered as a basic semantic-based representation unit. Indeed,
the vector V w

d represents a segment or a session of a transcrip-
tion d. In our model, the segment super-vector m(d,Γ) of a tran-
scription d knowing a topic space Γ is modeled:

m(d,Γ) = m+ Tx(d,Γ) (1)

3.3. C-vector conditioning

In [9], the authors proposed a solution to these 3 raised i-vector
issues: (i) the i-vectors x of equation 1 have to be theoretically
normally distributed among the normal distribution N (0, I),
(ii) the “radial” effect should be removed, and (iii) the full rank
total factor space should be used to apply discriminant trans-
formations. To do so, they apply transformations for train and
test transcription representations. The first step is to evaluate
the empirical mean x and covariance matrix V of the training
c-vector. The covariance matrix V is decomposed by diago-
nalization into PDP t where P is the eigenvector matrix of V
and D is the diagonal version of V . A train c-vector x is trans-
formed to x′ as follows:

x′ =
D−

1
2P t(x− x)√

(x− x)tV −1(x− x)
(2)

The numerator is equivalent by rotation to V −
1
2 (x − x)

and the euclidean norm of x′ is equal to 1. The same trans-
formation is applied to the test c-vectors, using the training set
parameters x and mean covariance V as estimations of the test
set of parameters. Figure 2 shows the transformation steps: fig-
ure 2-(a) is the original training set; figure 2-(b) shows the ro-
tation applied to the initial training set around principal axes
of the total variability when P t is applied; figure 2-(c) shows

the standardization of c-vectors when D−
1
2 is applied; and fi-

nally, figure 2-(d) shows the c-vector x′ on the surface area of
the unit hypersphere after a length normalization by a division
of

√
(x− x)tV −1(x− x).

4. Experimental Protocol
The proposed c-vector representation of automatic transcrip-
tions is evaluated in the context of the theme identification of

1The UBM is a GMM that represents all the possible observations.

a human/human telephone conversation in the customer care
service (CCS) of the RATP Paris transportation system. The
Mahalanobis metric is used to associate a theme to a dialogue.
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Figure 2: Effect of the standardization with the EFR algorithm.

4.1. Theme identification task

The DECODA project corpus [1] was used to perform experi-
ments on the conversation theme identification. It is composed
of 1,514 telephone conversations, corresponding to about 74
hours of signal, split into a train set (740 dialogues), a devel-
opment set (447 dialogues) and a test set (327 dialogues), and
manually annotated with 8 conversation themes: problems of
itinerary, lost and found, time schedules, transportation cards,
state of the traffic, fares, infractions and special offers.

A LDA model allowed to elaborate 500 topic spaces with 50
topics by varying the topic distribution parameter −→α . For each
theme {Ci}8i=1, a set of 50 theme specific words is identified.
The same word may appear in more than one theme vocabulary
selection. All the selected words are then merged without repe-
tition to form V made of 166 words. The topic spaces are made
with the LDA Mallet Java implementation2.

The ASR system used for the experiments is LIA-
Speeral [19]. Acoustic model parameters were estimated from
150 hours of speech in telephone conditions. The vocabulary
contains 5,782 words. A 3-gram language model (LM) was
obtained by adapting a basic LM with the train set transcrip-
tions. This system reaches an overall Word Error Rate (WER)
of 45.8%, 59.3%, and 58.0%, respectively on the train, devel-
opment and on test sets. These high WER are mainly due to
speech disfluencies and to adverse acoustic environments (for
example, calls from noisy streets with mobile phones). A “stop
list” of 126 words3 was used to remove unnecessary words
(mainly function words) which results in a WER of 33.8% on
the train, 45.2% on the development, and 49.5% on the test.

4.2. Mahalanobis metric

Given a new observation x, the goal of the task is to identify
the theme belonging to x. The probabilistic approaches ignore
the process by which c-vectors were extracted and they pretend
instead they were generated by a prescribed generative model.
Once a c-vector is obtained from a dialogue, its representation
mechanism is ignored and is regarded as an observation from a

2http://mallet.cs.umass.edu/
3http://code.google.com/p/stop-words/
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probabilistic generative model. The Mahalanobis scoring met-
ric assigns a dialogue d with the most likely theme C. Given a
training dataset of dialogues, let W denote the within dialogue
covariance matrix defined by:

W =
K∑

k=1

nt

n
Wk =

1

n

K∑
k=1

nt∑
i=0

(
xk
i − xk

)(
xk
i − xk

)t

(3)

where Wk is the covariance matrix of the kth theme Ck, nt is
the number of utterances for the theme Ck, n is the total number
of dialogues, and xk is the mean of all dialogues xk

i of Ck.
Each dialogue does not contribute to the covariance in an

equivalent way: the term nt
n

is then introduced in equation 3. If
homoscedasticity (equality of the class covariances) and Gaus-
sian conditional density models are assumed, a new observation
x from the test dataset can be assigned to the most likely theme
CkBayes using the classifier based on the Bayes decision rule:

CkBayes = argmax
k

N (x | xk,W)

= argmax
k

{
−1
2
(x− xk)

t W−1 (x− xk) + ak

}

where ak = log (P (Ck)). It is noted that, with these as-
sumptions, the Bayesian approach is similar to the Fisher’s ge-
ometric approach: x is assigned to the nearest centroid’s class,
according to the Mahalanobis metric [20] of W−1:

CkBayes = argmax
k

{
−1
2
||x− xk||2W−1 + ak

}
(4)
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Figure 3: Theme classification rates using various topic-based
representations with EFR normalization on the dev and test sets.

5. Results
Classification approaches applied on the same classification
task and corpus are proposed in [3] (state-of-the-art in text clas-
sification). The best configuration (LDA representation + SVM
classification) reaches an accuracy of 81.4%. We propose to
consider this work as a baseline system (baseline BL SVM).

Experiments are conducted using the multiple topic spaces
estimated with a LDA approach. From these multiple topic
spaces, the classical approach is to find the one that reaches the
best performance. Figure 3-(a) presents the theme classification
performance obtained on the development and test sets using
various topic-based representation configurations with the EFR
normalization algorithm (baseline BL TBR).

First of all, we can see that the baseline BL TBR reached
a classification accuracy of 87.4% on the development set.
Nonetheless, we note that the classification performance is
rather unstable, and may completely change from a topic space
configuration to another. The gap between the lower and the
higher classification results is also important, with a difference
of 16.6 points. As a result, finding the best topic space con-
figuration seems crucial for this classification task, particularly
in the context of highly imperfect automatic transcriptions. Fi-
nally, when comparing results obtained on the development and
test sets (figures 3-(a) and (b)), we can see that the best operat-
ing point is different: if the one estimated on the development
set would be applied to the test set (best operating point), the
classification accuracy would reach 75.2% (best development
accuracy is reached with α = 0.024), while the best potential
classification result reaches 82.8%.

Table 1 presents the original c-vector approach coupled
with the EFR normalization algorithm. We can firstly note that
this compact representation allows to outperform results ob-
tained with the best topic space configuration, with a gain of 1.7
points on the development and of 1.9 points on the test data. The
inconsistency of the classification performance is not observed
with this approach. Indeed, the configuration that obtained the
best accuracy on the dev. set is also the same on the test set.
Moreover, if we consider the different c-vector configurations,
the gap between accuracies is much smaller: classification ac-
curacy does not go below 82.3%, while it reached 70.8% for the
worst topic-based configuration (see figure 3-(a)).

Table 1: Theme classification accuracy (%) using c-vectors.
DEV TEST

Number of Gaussians in GMM-UBM
c-vector size 32 64 128 32 64 128

60 82.8 88.6 83.4 76.7 83.1 77.0

80 87.4 86.3 87.4 83.4 82.8 74.3

100 82.3 89.1 85.1 81.0 84.7 72.2

120 82.3 83.0 83.4 78.3 81.3 76.1

We can conclude that this original c-vector approach al-
lows to better handle variabilities contained in dialogue con-
versations: in the automatic classification context, a better ac-
curacy can be obtained and the results being more consistent
when varying the c-vector size and the number of Gaussians.

6. Conclusions
This paper presents an original multi-view representation of
highly imperfect dialogue transcriptions, and a fusion process
with the use of Factor Analysis. The effectiveness of the pro-
posed approach is evaluated in the task of theme identifica-
tion. Thus, the architecture of the system identifies conversa-
tion themes using an i-vector approach. Originally developed
for speaker recognition, we showed that this compact represen-
tation can be applied to a text classification task. Indeed, this so-
lution allowed to obtain a better classification accuracy than the
use of the classical best topic space configuration. In fact, we
highlighted that this original compact version of all topic-based
representations of dialogues, named c-vector, coupled with the
EFR normalization algorithm, is a better solution to deal with
dialogue variabilities (high word error rates, bad acoustic con-
ditions, unusual word vocabulary...). Finally, the classification
accuracy reached 84.7% with a gain of 9.5 points with the same
configuration (best BL TBR operating point 75.2%), 1.9 points
with best topic space size (82.8%), and 3.7 points with the base-
line BL SVM (81.4%).
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