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Abstract
In the last decades, encoder-decoders or autoencoders (AE)

have received a great interest from researchers due to their capa-
bility to construct robust representations of documents in a low
dimensional subspace. Nonetheless, autoencoders reveal little
in way of spoken document internal structure by only consid-
ering words or topics contained in the document as an isolate
basic element, and tend to overfit with small corpus of docu-
ments. Therefore, Quaternion Multi-layer Perceptrons (QMLP)
have been introduced to capture such internal latent depen-
dencies, whereas denoising autoencoders (DAE) are composed
with different stochastic noises to better process small set of
documents. This paper presents a novel autoencoder based on
both hitherto-proposed DAE (to manage small corpus) and the
QMLP (to consider internal latent structures) called “Quater-
nion denoising encoder-decoder” (QDAE). Moreover, the paper
defines an original angular Gaussian noise adapted to the speci-
ficity of hyper-complex algebra. The experiments, conduced on
a theme identification task of spoken dialogues from the DE-
CODA framework, show that the QDAE obtains the promising
gains of 3% and 1.5% compared to the standard real valued de-
noising autoencoder and the QMLP respectively.
Index Terms: Spoken language understanding, Neural net-
works, Quaternion algebra, Denoising encoder-decoder neural
networks

1. Introduction
A basic encoder-decoder neural network [1] (AE) consists of
two neural networks (NN): an encoder that maps an input vec-
tor into a low-dimensional and fixed context vector; a decoder
that generates a target vector by reconstructing this context vec-
tor. Multidimensional data such as latent structures of spo-
ken dialogue are difficult to capture by traditional autoencoders
due to the unidimensionality of real numbers employed. [2],
[3] have introduced a quaternions-based multilayer perceptron
(QMLP) as well as a specific spoken dialogues segmentation to
better capture internal structures as a result of the Hamilton dot
product [4], and thus achieve better accuracies than real-valued
multilayer perceptrons (MLP), on a theme identification task of
spoken dialogues. A quaternion encoder-decoder has then been
proposed by [5] to take advantage of the multidimensionality
of hyper-complex numbers to code existing latents relations be-
tween pixel colors. However, both quaternions and real num-
bers based autoencoders suffer from overfitting and degraded
generalization capabilities when dealing with small corpus of
documents [6]. Indeed, autoencoders try to map the initial vec-
tor in a low-dimensional subspace and are thus highly corre-
lated with the number of patterns to learn. To overcome this
drawback, a stochastic encoder-decoder called denoising auto-
encoders (DAE) have been proposed by [6] and investigated in
[7, 8, 9]. Intuitively, a denoising auto-encoder encodes artifi-

cially corrupted inputs, and try to reconstruct the initial vector.
By learning this noisy representation, DAE tends to better ab-
stract patterns in a reduced robust subspace.
The paper proposes a novel quaternion denoising encoder-
decoder (QDAE) that takes into account the internal document
structure (such as the QMLP) and is able to manage small cor-
pus (as DAE). Nonetheless, traditional noises, such as additive
isotropic Gaussian noise [10] , are elaborated for real-numbers
autoencoders. Therefore, we also propose a Gaussian angu-
lar noise (GAN) adapted to the quaternion algebra. The ex-
periments on the DECODA telephone conversations framework
show the impact of the different noises, alongside to underline
the performance of the proposed QDAE over DAE, AE, MLP
and QMLP.
The rest of the paper is organized as follows: Section 2 presents
the quaternion encoder-decoder and Section 3 details the exper-
imental protocol. The results are discussed in Section 4 before
concluding on Section 5.

2. Quaternion Denoising Encoder-Decoder
The proposed QDAE is a denoising autoencoder with quater-
nion numbers. Section 2.1 details the quaternion properties re-
quired for the QAE, and QDAE algorithms are presented in Sec-
tion 2.2.

2.1. Quaternion algebra

Quaternion algebra Q is an extension of complex numbers de-
fined in a four dimensional space as a linear combination of
four basis elements denoted as 1, i, j, k to represent a rotation.
A quaternion Q is written as Q = r1 + xi + yj + zk. In a
quaternion, r is the real part while xi+yj+zk is the imaginary
part (I) or the vector part. A set of basic quaternion properties
needed for the QDAE definition are defined as follow:

• all products of i, j,k: i2 = j2 = k2 = ijk = −1

• quaternion conjugate Q∗ of Q is:
Q∗ = r1− xi− yj− zk

• inner product between two quaternions Q1 and Q2 is
〈Q1, Q2〉 = r1r2 + x1x2 + y1y2 + u1u2

• normalized of a quaternion Q/ = Q√
r2+x2+y2+z2

• rotation through the angle of quaternion R/:
Q′ = R/QR/∗

• Hamilton product ⊗ between Q1 and Q2 encodes latent de-
pendencies and is defined as follows:

Q1 ⊗Q2 =(r1r2 − x1x2 − y1y2 − z1z2)+

(r1x2 + x1r2 + y1z2 − z1y2)i+
(r1y2 − x1z2 + y1r2 + z1x2)j+
(r1z2 + x1y2 − y1x2 + z1r2)k
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Q1 ⊗ Q2 performs an interpolation between two rotations fol-
lowing a geodesic over a sphere in the R3 space. More about
hyper-complex numbers can be found in [4, 11, 12] and about
quaternion algebra in [13].

2.2. Quaternion Autoencoder (QAE)

The QAE is a three-layered neural network made of an encoder
and a decoder (see Figure 1-(a)). The well known autoencoder
(AE) is obtained with the same algorithm but with real numbers.

hn

Qp Q̃p

hn

Qcorrupted
p f (Qp) Qp Q̃p

(a) Quaternion autoencoder (b) Quaternion denoising autoencoder

Figure 1: Illustration of the Quaternion autoencoders.

Given a set of P normalized inputs Q/
p (referenced as Qp for

convenience) (1 ≤ p ≤ P ) of size M , the encoder computes
an hidden representation hn of Qp = {Qm}Mm=1 (N is the
number of hidden units):

hn = α(

M∑
m=1

w(1)
nm ⊗Qm + θ(1)n )

where w(1) is a N × M weight matrix and θ(1) is a N -
dimensional bias vector; α(Q) is the sigmoid activation func-
tion of the quaternion Q [14] α(Q) = sig(r)1 + sig(x)i +
sig(y)j + sig(z)k, with

sig(.) =
1

1 + e−.
. (1)

The decoder attempts to reconstruct the input vector Qp from
the hidden vector hn to obtain the output vector Q̃p ={
Q̃m

}M

m=1
:

Q̃m = α(

N∑
n=1

w(2)
mn ⊗ hn + θ(2)m )

where the reconstructed quaternion vector Q̃p is M - dimen-
sional, w(2) is a M × N weight matrix and θ(2) is a M -
dimensional bias vector. During learning, the QAE attempts to
reduce the reconstruction error e between Q̃p and Qp by using
the traditional Mean Square Error (MSE) [15]:

eMSE(Q̃m, Qm) = ||Q̃m −Qm||2 (2)

for minimizing the total reconstruction error LMSE:

LMSE =
1

P

∑
p∈P

∑
m∈M

eMSE(Q̃m, Qm (3)

with respect to the parameters (quaternions) set Γ =
{w(1), θ(1), w(2), θ(2)}.

2.3. Quaternion Denoising Autoencoder (QDAE)

Traditional autoencoders fail to: 1) separate robust features and
relevant information to residual noise [9] from small corpus; 2)
take into account the temporal and internal structures of spo-
ken documents. Therefore, denoising autoencoders (DAE) [9]
corrupt inputs using specific noises during the encoding and de-
code this representation to reconstruct the non-corrupted inputs.
DAE models learn a robust generative model to better repre-
sent small sized corpus of documents; [2] propose to learn in-
ternal and temporal structure representation with a quaternion
multilayer perceptron (QMLP). The paper proposes to address
issues related to small sized corpus (such as DAE) and to tem-
poral structure (QMLP) by introducing a quaternion denoising
autoencoder called QDAE. Figure 1-(b) shows an input vector
Qp artificially corrupted by a noise function f() applied to each
index Qm of Qp as:

f(Qp) = {f(Q1), . . . , f(Qm), . . . , f(QM )}. (4)

Standard real-numbers-adapted noises :
• Additive isotropic Gaussian (G): Adds a different Gaussian

noise to each input values (Q1, . . . , Qm, . . . , QM ) of a fixed
proportion of patterns Qp with means and variances of the
Gaussian distribution bounded by the corresponding average
of all the patterns of the same prediction theme of Qp.

• Salt-and-pepper (SP): fixes amount of patterns of all patterns
Qp randomly set to 1 or 0.

• Dropout(D): fixes amount of patterns of all patterns Qp ran-
domly set to 0.

Given a noise function f() the corresponding corrupted quater-
nion of Qm = r1 + xi + yj + zk is:

Qcorrupted
m = f(Qm) = f(r)1 + f(x)i + f(y)j + f(z)k. (5)

Nonetheless, such a representation does not take into account
the specificity of quaternion algebra since they were designed
for real numbers. Indeed, a quaternion represents a rotation
over the R3 space. Therefore, basic additive and non-angular
noises such as a Gaussian noise, only represents a one dimen-
sional translation and does not take advantage of the rotation
defined by a quaternion.

Quaternion Gaussian Angular Noise (GAN):
The GAN takes advantage of the quaternion algebra (rotation)
and is proposed to address the drawback of a weakly adapted
noise function (add a noise to each quaternion) to the rotation
definition of quaternions. The GAN noise function is based on
the rotation of a quaternion vector Qp around an axis defined
in a cone centered in mt and delimited by vt; where mt is the
mean and vt is the variance of the patterns Qp belonging to
theme t. Let Rt

p be a Gaussian noised Quaternion for the theme
t defined as:

Rt
p = mt +N (0, I) vt . (6)

The Gaussian angular noise function f() rotates Qp belonging
to the theme t around Rt

p to obtain the corrupted Quaternion
Qcorrupted

p :

f(Qp) =
Rt

p ⊗Qp ⊗Rt∗
p

|Rt
p ⊗Qp|

and (7)

f(Qp) =

{
Qp, if Rt

p = Qp

Qcorrupted
p , otherwise

(8)
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It is worth noticing in eq.(8) that f is idempotent since Rt
p =

Qp to maintain the dialogue pattern unaltered.

3. Experimental protocol

The effectiveness of the proposed QDAE-GAN is evaluated dur-
ing a theme identification task of telephone conversations from
the DECODA corpus detailed in Section 3.1. Section 3.2 ex-
presses the dialogue features employed as inputs of autoen-
coders as well as the configurations of each neural network.

3.1. Spoken Dialogue dataset

The DECODA corpus [16] contains human-human telephone
real-life conversations collected in the CSS of the Paris trans-
portation system (RATP). It is composed of 1, 242 telephone
conversations, corresponding to about 74 hours of signal, split
into a train (740 dialogues), a development (dev - 175 dia-
logues) and a test set (327 dialogues). Each conversations is
annotated with one of 8 themes. Themes correspond to cus-
tomer problems or inquiries about itinerary, lost and found, time
schedules, transportation cards, state of the traffic, fares, fines
and special offers. The LIA-Speeral Automatic Speech Recog-
nition (ASR) system [17] is used for automatically transcribing
each conversation. Acoustic model parameters are estimated
from 150 hours of telephone speech. The vocabulary contains
5, 782 words. A 3-gram language model (LM) is obtained by
adapting a basic LM with the training set transcriptions. Auto-
matic transcriptins are obtained with word error rates (WERs)
of 33.8%, 45.2% and 49.% on the train, dev. and test sets re-
spectively. These high rates are mainly due to speech disflu-
encies in casual users and to adverse acoustic environments in
metro stations and streets.

3.2. Input features and Neural Networks settings

The experiments compare our proposed QDAE with DAE
based on real-numbers [7] and to the QMLP[2].

Input features: [2] show that a LDA [18] space with 25
topics and a specific user-agent document segmentation involv-
ing the quaternion Q = r1 + xi + yj + zk to be build with the
user part of the dialogue in the first complex value x, the agent
in y and the topic prior of the whole dialogue on z, achieve the
best results on 10 folds with the QMLP. Therefore, we keep
this segmentation and concatenate the 10 representations of
size 25 in a single input vector of size M = 250. Indeed, the
compression of 10 folds in a single input vector gives to DAEs
more features for generalizing patterns. For fair comparison, a
QMLP with the same input vector is tested.

QDAE and QMLP configurations: The appropriate
size of the hidden layer h for the QDAE have to be chosen by
varying the number of neurons of the hidden layer to change
the amount and the shape of features given to the classifier.
Different autoencoders have thus been learned by fluctuating
the hidden layer size from 10 to 120. Finally a QMLP classifier
is trained with 8 hidden neurons; the hidden layer of the QAE,
QDAE as the input vectors; and 8 outputs neurons (8 themes t
on the DECODA corpus).

4. Experiments and Results
The proposed Quaternion denoising autoencoder (QDAE) is
compared to the quaternion autoencoder (QAE) in Section 4.1,
throughout a theme identification task of telephone conversa-
tions described in Section 3.1. For fair comparison, the QDAE
is then compared to the real-valued AE and MLP in Section 4.2.

4.1. QDAE with additive and angular noises

Figure 2 shows the accuracies obtained with the denoising
quaternion encoder-decoder for the development and the test set
during the theme identification task of telephone conversations
of DECODA project.
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Figure 2: Accuracies in % obtained on the development (left)
and test (right) set by varying the number of neurons in the hid-
den layer of the QAE and QDAE.

The first remark is that the results obtained on the development
dataset reported in Fig.2 are similar whatever the model em-
ployed. Nonetheless, the proposed QDAE-GAN gives better,
and more robust to hidden layer size variation, results on the
test dataset than any other methods.

Models Dev. Best Test Real Test
QAE 89.1 83.0 80.9

QDAE-SP 88.5 82.5 81.2
QDAE-G 88.5 83.1 81.5
QDAE-D 89.1 83.0 82.5

QDAE-GAN 90.2 85.2 85.2

Table 1: Accuracies in % obtained by proposed quaternion
encoder-decoders on the DECODA dataset

Table 1 validates the results observed for the QDAE-GAN
with a gain of more than 3.5% and 2.5% for QDAE-G and
QDAE-D respectively. As expected, traditional noises give
worse results compared to the adapted noise due to the speci-
ficities of the quaternion algebra. Indeed, an additive real-based
Gaussian noise applied to a quaternion does not take advantage
of rotations defining quaternions. It is worth underlying the bad
performances reported with the QDAE-SP and QDAE-D, which
are not based on real or quaternion algebra specificities: These
poor performances are explained by the high impact of zero val-
ues propagated during the Hamilton product (see Section 2.1)
by increasing the number of dead neurons through the neural
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network. Finally, the non-corrupted QAE gives a good ”best
test” value on the test dataset (83%) regarding the other QDAE,
proving the non-relevance of real-based noises to quaternion-
based autoencoders.

4.2. QDAE vs. real-valued neural networks

For a fair comparison this original QDAE-GAN approach is
compared to real-valued autoencoders and traditional neural
networks, and the results are depicted in Table 2.

Models Type Dev. Best Test Real Test Impr.
MLP[2] R 85.2 79.6 79.6 -
QMLP Q 89.7 83.7 83.7 +4.1
AE[7] R - - 81 -
QAE Q 89.1 83.0 80.9 -0.1

DAE[7] R - - 74.3 -
DSAE[7] R 88.0 83.0 82.0 +7.7

QDAE-GAN Q 90.2 85.2 85.2 +10.9

Table 2: Summary of accuracies in % obtained by different
neural networks on the DECODA famework.

Table 2 shows that non-adapted noise and standard QAE give
worse performances than a QMLP because of the lack of unseen
compressed information they give to the classifier. It is worth
emphasizing that the best accuracies observed are obtained by
the QDAE-GAN representing a gain of 11% regarding DAE [7].
The results depicted on Table 2 demonstrate the global improve-
ment of performances of the quaternion-valued neural networks
compared to the real-valued ones. Indeed, QMLP also gives a
important gain of more than 4% regarding the MLP; QDAE-
GAN obtains a gain of 3.2% compared to DSAE.

5. Conclusion
Summary. This paper proposes a promising denoising encoder-
decoder based on the quaternion algebra coupled with an orig-
inal and well-adapted quaternion Gaussian angular noise. The
initial intuition that the QDAE better captures latent relations
between input features and can generalize from small cor-
pus, has been demonstrated. It has been shown that ongoing
noises during learning must be adapted to the quaternion alge-
bra to give better results and truly expose the full potential of
quaternion neural networks. Moreover, this paper shows that
quaternion-valued neural networks always perform better than
real-valued ones achieving impressive accuracies on the small
DECODA corpus with less input features and less neural pa-
rameters.
Limitations and Future Work. Document segmentation is a
crucial issue when it comes to better capture latent, temporal
and spacial information and thus needs more investigation to
expose the potential of quaternion-based models. Moreover, the
lack of GPU tools to manage quaternions impline a massive im-
plementation time to deal with bigger spoken document corpus.
A future work is to investigate other quaternion adapted noises,
and other quaternion based neural networks which better take
into consideration the document internal structure , such as re-
current neural networks and Long Short Term Memory neural
networks.
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