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ABSTRACT
Most of the Natural and Spoken Language Processing tasks
now employ Neural Networks (NN), allowing them to reach
impressive performances. Embedding features allow the NLP
systems to represent input vectors in a latent space and to
improve the observed performances. In this context, Recur-
rent Neural Network (RNN) based architectures such as Long
Short-Term Memory (LSTM) are well known for their ca-
pacity to encode sequential data into a non-sequential hidden
vector representation, called sequence embedding. In this pa-
per, we propose an LSTM-based multi-stream sequence em-
bedding in order to encode parallel sequences by a single
non-sequential latent representation vector. We then propose
to map this embedding representation in a high-dimensional
space using a Support Vector Machine (SVM) in order to
classify the multi-stream sequences by finding out an opti-
mal hyperplane. Multi-stream sequence embedding allowed
the SVM classifier to more efficiently profit from information
carried by both parallel streams and longer sequences. The
system achieved the best performance, in a multi-stream se-
quence classification task, with a gain of 9 points in error rate
compared to an SVM trained on the original input sequences.

Index Terms— Sequence embedding, multi-stream clas-
sification, high dimensional space

1. INTRODUCTION

In the recent years, Neural Networks (NN) became state-of-
the-art Machine Learning (ML) techniques in several appli-
cation fields with impressive performances [1, 2, 3, 4]. The
classification of event sequences, such as words, sentences
and time series, is one of the applications that witnessed the
considerable performance of NN. RNN based architectures
such as Long Short-Term Memory (LSTM) [5] have gained
a particular attention in sequence classification including sen-
tence [6] and successive images [7] processing. An important
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advantage of RNNs is that they encode sequential data into
a non-sequential hidden vector representation. This process
is also known as Sequence Embedding [8], and more com-
monly as Phrase Embedding in the Natural Language Pro-
cessing (NLP) domain [9, 10, 11]. In fact, in tasks such as
computer vision and audio-visual speech processing, several
event sequences are provided by parallel and maybe indepen-
dent sources. However, straightforward RNN representation
methods can not encode this multi-stream data. Therefore,
we propose in this work to encode parallel sequences by con-
catenating multiple sequence embeddings in order to obtain a
single non-sequential super vector representation. This latter
is then used to help classifiers to behave more effectively with
multi-stream sequential data. A classical Multi-Layer Percep-
tron (MLP) [12, 13, 14] tries to find out piecewise decision
surfaces in order to separate not linearly separable input fea-
tures. In fact, the ability of MLP to classify these kinds of data
is limited by the number of hidden units. However, support
vector machines (SVM) [15] can map the input features in a
high-dimensional (and even infinite) space to find a robust hy-
perplane that linearly separates the data. The classification of
sequence-embeddings is evaluated using these two classifiers
through a telecast genre prediction task. We noticed that the
error observed during the classification is lower when a hy-
perplane is found on the high-dimensional space than when
nonlinear decision surfaces are found from the original space
with MLP.

The rest of the paper is organized as follows. We present
some related works in Section 2. A workflow of our approach
is then shown after some basic concepts in Section 3. Finally,
the conducted experiments and the results are respectively de-
scribed in Sections 4 and 5 before concluding in Section 6.

2. RELATED WORKS

In this section we present some related works on sequence
classification and sequence embeddings.



2.1. MLP and SVM classification

SVM and MLP are two machine ML methods that proved
their efficiency in several classification tasks [12, 13, 14, 15].
A Multi-Layer Perceptron (MLP) uses a defined number of
perceptrons [16] which carries out a binary classification by
separating regions that are linearly separable. Using multiple
hidden units (perceptrons), MLP can build piecewise decision
surfaces in order to separate not linearly separable input fea-
tures. However, the ability of MLP to classify these kinds
of data is limited by the number of hidden units. In the other
hand, SVM has the ability to map the input features in a space
of infinitely high dimensions to find a robust hyperplane that
linearly separates the data.

Regarding sequence classification, SVMs are well-known
for their competitive performance [17, 18]. Many works dealt
with sequence classification using SVM or SVM-based clas-
sifiers. In [19], SVM outperformed Naive Bayes, k-nearest
neighbors, and decision tree algorithms in formal text clas-
sification. SVM performance in [20] was the best among a
set of several classifiers, including decision tree and random
forest algorithms, for adaptive sentiment classification on dy-
namic tweets.

2.2. Neural networks and Sequence embeddings

Convolutional NN [1, 21, 22] as well as Recursive NN proved
their efficiency in the field of sequence classification. Due to
their architecture, Recurrent NN (RNN) are even more suit-
able for sequential inputs. For example, Long Short-Term
Memory networks are among the widely used RNN [23, 3].
[24] uses a tree-structured LSTM outperforming several se-
quential models and [25] proposes a hierarchical LSTM with
two levels of LSTM networks that builds an embedded rep-
resentation of words sequence for tweet representation. This
last work guides us to broach the subject of sequence em-
bedding that gives a real-valued vector representation to a se-
quence of events (words for NLP tasks). Authors in [25] use
the hidden state of the last element (of the word-level LSTM)
as the representation of the sequence (i.e. the tweet). [8] build
a supervised sequence embedding by projecting n-grams into
a latent lower-dimensional space through a sliding window of
length n. Semi-supervised approaches, as in [26] and [10],
initiate a recursive auto-encoder (RAE) with an unsupervised
algorithm before fine-tuning it using the output’s label. CNN
are also used for sequence embedding [27] in order to gener-
ate phrase embeddings from word embeddings which learns
a low dimensional real-valued vector representation of words.
[28] simply defines a sentence representation with the sum of
all single-word embeddings. All these approaches propose an
embedding type that is oriented towards a specific task, such
as sentiment classification [9], machine translation [29] and,
more recently, paraphrase identification [28] and may not nec-
essarily take the word order as the privileged information. For
this reason, we chose an LSTM-based embedding in our work

since it would be the most adapted architecture to encode se-
quences.

3. PROPOSED APPROACH

Section 3.1 describes LSTM networks that we used in or-
der to extract sequence embeddings. The two used classifiers
(MLP and SVM) are then detailed respectively in Sections 3.2
and 3.3. We finally detail our multi-stream classification pro-
cess in Section 3.4.

3.1. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [5] networks are a spe-
cial case of Recurrent Neural Networks (RNNs) [30]. The
goal of this architecture is to create an internal cell state of
the network which allows it to exhibit dynamic temporal be-
havior. This internal state allows the RNN to process arbi-
trary sequences of inputs such as sequences of words [6] for
language modeling, time series [31]. . . The RNN takes as in-
put sequence x = (x1, x2, . . . , xT ) and computes the hidden
sequence h = (h1, h2, . . . , hT ) as well as the output vector
y = (y1, y2, . . . , yT ) by iterating from t = 1 to T :

ht = H(Wxhxt + Whhht−1 + bh) (1)
yt = Whyht + by (2)

where T is the total number of sequences; Wxh are the
weight matrices between the input layers x and h and so on;
b is a bias vector, and H is the composite function. [5] shows
that LSTM networks outperform RNNs for finding long range
context and dependencies. The LSTM composite function H
forming the LSTM cell with peephole connections [32] is pre-
sented in Figure 1 and defined as:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (3)
ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (4)
ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (5)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where i, f and o, are respectively the input, forget and out-
put gates, and c the cell activation vector with the same size
than the hidden vector h. The weight matrices W from cell
c to gates i, f and o, are diagonal, and thus, an element e in
each gate vector receives only the element e from the cell vec-
tor. Finally, σ is the logistic sigmoid function. The ht layer
composes the sequence embedding that is employed as input
features of both MLP and SVM classification approaches.

3.2. Multi-Layer Perceptron

A feed-forward neural network with a single hidden layer,
called a Multi-Layer Perceptron (MLP), is composed of three
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Fig. 1. Long Short-Term Memory (LSTM) cell. Dashed ar-
rows correspond to connections with time-lag (t − 1). α in-
put/output activation function is usually tanh.

different components (or layers) as presented in Figure 2: in-
put layer (x), hidden layer(s) (θ) and output layer (y). The
hidden layer in the MLP containing is fully connected to in-
put and output ones. The activation function used during the
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Fig. 2. A Multi-Layer Perceptron (MLP) architecture.

experiments is the classical hyperbolic-tangent function:

α(x) =
ex − e−x

ex + e−x
(8)

The feed-forward algorithm of the MLP is composed of 3
steps: forward, learning and update phases:

Forward phase
Let Nl be the number of neurons contained into the layer l
(1 ≤ l ≤ M ) and M the number of layers of the MLP. bln
is the bias of the neuron n (1 ≤ n ≤ Nl) from the layer l.
Given a set of P input patterns xp (1 ≤ p ≤ P ) and a set of
labels yp associated to each xp, the output γln (γ0n = xnp ) of
the neuron n from the layer l is given by:

γln = α(Sl
n)

with Sl
n =

Nl−1∑
m=0

wl
nm × γl−1m + bln (9)

Learning phase

The error e observed between the expected outcome y and the
result of the forward phase γ is then evaluated as follows:

eln = yn − γln (10)

for the output layer (l =M ), and

eln =

Nl+1∑
h=1

wl+1
h,n × δ

l+1
h , (11)

for the hidden layer l (1 < l < M ). The gradient δ is com-
puted with:

δln = eln ×
∂α(Sl

n)

∂Sl
n

where
∂α(Sl

n)

∂Sl
n

= α(Sl
n)(1− α(Sl

n))

(12)

Update phase
When errors between the expected outcome and the result are
computed, the weights wl

n,m and the bias bln have to be re-
spectively updated to wl?

n,m and bl
?

n :

wl?

n,m = wl
n,m + εδln × α(Sl

n) (13)

bl
?

n = bln + εδln . (14)

3.3. High-dimensional hyperplane from a SVM
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Fig. 3. Maximum-margin hyperplane and margins for a SVM
trained with samples from two classes. Samples on the mar-
gin are called the support vectors.

This classifier modifies the representation of data, which
are mapped into a space of higher dimension. More formally,
a support vector machine (SVM) constructs a hyperplane or
a set of hyperplanes in a high (or infinite) dimensional space,
which can be used for classification (see [33] for further de-
tails). In fact, if data is not linearly separable, the separa-
tion between input features vectors are impossible. Therefore,



the hyperplanes (or set of hyperplanes) have to be found in a
higher even infinite space. Intuitively, a good separation is
achieved by the hyperplane that has the largest distance 2

||w||
to the nearest training data point w of any class (so-called
functional margin), since, in general, the larger the margin the
lower the generalization error of the classifier (see Figure 3).
This hyperplane is defined as the set of points xi labeled as yi
that minimize the norm ||w|| of the normal vector as described
in Figure 3 subject to:

w × xi + b ≥ yi (15)

3.4. Multi-stream classification using sequence-embedding

LSTM is known to perform quite well in sequential inputs
classification. However, this representation method can not
encode multi-stream data provided by independent sources.
In fact, simply concatenating the parallel input data is not rel-
evant. LSTM is actually supposed to encode recurrent rela-
tions to rather homogeneous input data. Thus, giving con-
catenated data to an LSTM layer is theoretically incorrect.

Therefore, our approach, presented in Figure 4, consists
in training a different LSTM-based network on each input
stream as in a). Building this supervised sequence embedding
would allow us to make a latent representation of the sequen-
tial data, in the form of non-sequential vectors. Afterwards,
we concatenate, as in b), the vectors produced by LSTM en-
coding in a single super-vector performing a multi-stream la-
tent representation. We think this representation could in-
deed help state-of-the-art classifiers to behave more effec-
tively with multi-stream sequential data.

Regarding the classification process, we compared two
state-of-the-art methods, namely MLP and SVM trained on
the produced sequence-embedding representation (as in c)).
SVMs find a hyperplane on the high-dimensional space while
MLPs define nonlinear decision surfaces in the original space.

4. EXPERIMENTAL PROTOCOL

We will evaluate our multi-stream sequence-embedding rep-
resentation through a telecast genre prediction task. In this
section, we describe the evaluation task, the used dataset and
the models settings.

4.1. Genre prediction task

Sequence classification is evaluated through an automatic TV
show genre labeling task on the Electronic Program Guide
(EPG) corpus of the University of Avignon. For a given input
history sequence (composed of the n previous telecast gen-
res), a genre label representing the next telecast is output. The
size of the genre sequences (n) varies from 1 to 19. Multi-
stream experiments consists in using the history of multiple
channels in order to predict the next telecast genre for a spe-
cific channel.

Fig. 4. Multi-stream classification process using multi-source
LSTM-based latent representation. Sn: the nth stream.

4.2. EPG Dataset

The EPG dataset is extracted from 4 French TV channels (M6,
TF1, France 5 and TV5 Monde) for 3 years, from January
2013 to December 2015. M6 channel is used in our exper-
iments as the output stream. Data from 2013 and 2014 are
merged and split into the training (70%) and validation (30%)
datasets using a stratified shuffle split [34] in order to preserve
the same percentage of samples of each class in the output of
both folds, while the 2015 dataset is kept for testing. In or-
der to guarantee a clean experimental environment, labels (i.e.
genres) that are absent at least in one of the three folds were
removed. Doing so allows us to have equivalent datasets in
terms of labels vocabulary.

4.3. Models setups

The LSTM sequence embedding is built using, for each chan-
nel, an input layer with a size varying from 1 to 19 according
to the sequence length, the LSTM hidden layer h of size 80
and an output layer with a size equals to the number of differ-
ent possible TV genres (11). Regarding the classifiers based
on sequence embedding, the MLP network is composed of
a single hidden layer containing 400 nodes. The Keras li-
brary [35], based on Theano [36] for fast tensor manipulation
and CUDA-based GPU acceleration, has been employed to
train neural networks on a Nvidia GeForce GTX TITAN X
GPU card. For our second classifier, the SVM one-against-
one method is chosen with an RBF kernel [37]. This method



gives a better accuracy than the one-against-rest [38]. In this
multi-class problem, T denotes the number of genres and
ti, i = 1...T denotes the T genres. A binary classifier is then
used for every pair of distinct genres. As a result, T (T −1)/2
binary classifiers are constructed all together. The binary clas-
sifier Ci,j is trained from example data where ti is a positive
class (w × x + b = 1) and tj a negative (w × x + b = −1)
one (i 6= j). For a vector representation of an unseen input
s, if Ci,j means that s is in the label ti, then the vote for the
class ti is added by one. Otherwise, the vote for the genre tj
is increased by one. After the vote of all classifiers, the input
s is assigned to the label having the highest number of votes.

5. RESULTS AND DISCUSSION

After detailing the experimental protocol, we expose the re-
sults along with the relative discussions in two parts. We
present experiments using raw input data followed by those
using LSTM-based sequence embedding. The obtained re-
sults are compared with baseline mono-stream and multi-
stream experiments detailed in this section.

5.1. Classification using raw data

As a baseline mono-stream experiment, we carry out genre
prediction using the raw input sequences. A first mono-
channel experiment is conducted using M6 history sequences
with an SVM (SVM-IM6) and an MLP (MLP-IM6) classifier.
As depicted in Figure 5, SVM-IM6 performance improves us-
ing bigger sequence size until reaching the best error rate (ER)
among the two classifiers (30%) with sequences containing
genres of the last 6 telecasts. However, when sequence size
is too big (greater than 6), SVM classifier in SVM-IM6 fails
more and more at predicting the next genre as long as the
input size increases. We can explain this behavior by the fact
that SVM is known to have some weaknesses when dealing
with relatively high input size by training examples ratio.

Fig. 5. Performances (ER) of Mono-stream experiments :
SVM vs Multi-Layer Perceptron (MLP)

Considering that we evaluate our multi-stream classifica-
tion approach in the context of telecast genre labeling, we
want to verify if the history of other channels is useful to pre-
dict the genre of a single channel. For this purpose, we use
separately each of the 4 channels history as input sequences
(SVM-IM6, SVM-ITF1, SVM-IFr5 and SVM-ITV 5). Fig-
ure 6 shows that it is possible to predict the next M6 telecast
genre using other streams. In fact, with TF1 channel input, the
system correctly classifies almost half of the test examples.

Fig. 6. Performance (ER) of Mono-stream SVM on each
channel

The next step is to carry out a baseline multi-stream exper-
iment using the concatenation of all the raw input sequences
still using SVM (SVM-IConcat) and MLP (MLP-IConcat)
classifiers. As show in Figure 7, SVM-IConcat outperforms
both the SVM mono-stream classifier (SVM-IM6) and MLP-
IConcat with 26% of ER using sequences of size 2. Nonethe-
less the performance more rapidly and drastically falls with
longer sequences. We can notice that even if MLP-IConcat

performs better with big sequence sizes, its performance also
decreases as long as the sequence size increases. It becomes
obvious that combining the different streams in this way (us-
ing raw data), is not the best solution in order to use the infor-
mation provided by parallel streams.

Fig. 7. Performances (ER) of Multi-stream experiments:
SVM vs MLP



5.2. Classification using sequence-embedding

We noticed in the previous section that multi-stream classi-
fication using raw data behave badly when dealing with rel-
atively long sequences. In order to tackle this problem, we
train, as previously shown in Section 3.4, a separate LSTM-
based latent representation for each stream as sequence em-
bedding for our classifiers (cf. part a) in Figure 4). At first,
we visualize the individual impact of the LSTM encoding
through the mono-stream LSTM experiment carried out on
M6 (LSTM-IM6). At this point, as depicted in Figure 8, this
model already outperforms SVM-IM6 in almost all input con-
figurations with an ER of about 24% at several points.

Fig. 8. Performances (ER) of Mono-stream and multi-stream
experiments with LSTM output: SVM vs MLP

Continuing at the mono-stream level, an SVM trained
over the output of the mono-stream LSTM layer (SVM-
hLSTM
M6 ) is even slightly better. It is worth emphasizing that

these two experiments (cf. Figure 8 and Table 1) suffer no
more with relatively big history sequence sizes. This proves
at this level that the LSTM-based latent representation is more
robust and helps a classifier to better behave with sequential
data.

Back to our multi-stream experiment workflow, it is time
now to see how the multi-stream sequence embedding could
help at dealing with parallel sequential input data. Results
shown in Figure 8 reveal that classifiers based on the concate-
nated latent representations (cf. parts b) and c) in Figure 4),
which consists in MLP (MLP-hLSTM

Concat) and SVM (SVM-
hLSTM
Concat) classifiers, outperform the mono-stream LSTM-

based experiments (LSTM-IM6 and SVM-hLSTM
M6 ) by be-

tween 5 and 10 points. Furthermore, relying on the results of
multi-stream experiments shown in Table 2, it is proven that
sequence-embedding multi-stream classifiers (MLP-hLSTM

Concat

and SVM-hLSTM
Concat) do a lot better than simply concatenat-

ing raw data sequences in MLP-IConcat and SVM-IConcat.
Not only are the error rates lower in almost all the history
sizes, but also these models overtake the problem faced with
long sequences of history input. It is now rather possible to
fully profit from the additional information carried by long

sequences with the best performances using 19 and 18 sized
history sequences for respectively MLP-hLSTM

Concat and SVM-
hLSTM
Concat. In this configuration, MLP-hLSTM

Concat reaches an ER
of 18% against 17% for SVM-hLSTM

Concat.

Architecture ER(%) Sequence size
SVM-IFr5 62.51 7
SVM-ITV 5 62.66 5
SVM-ITF1 51.43 6
SVM-IM6 30.43 6
MLP-IM6 33.06 7
LSTM-IM6 23.95 13
SVM-hLSTM

M6 23.51 19

Table 1. Best performance for each mono-stream experiment

Architecture ER(%) Sequence size
MLP-IConcat 30.74 3
SVM-IConcat 26.19 2
MLP-hLSTM

Concat 18.30 19
SVM-hLSTM

Concat 17.04 18

Table 2. Best performance for each multi-stream experiment

6. CONCLUSION

In this paper, we presented a solution for classifying parallel
sequences using an LSTM-based multi-stream sequence em-
bedding. This representation helps classifiers not only to pre-
dict more precisely the correct output of sequences but also
to profit more efficiently from information carried by both
parallel streams and longer sequences. In this context, SVM
performed better than the used MLP architecture. From our
knowledge, this work is the first that tries to build an em-
bedding from input sequences provided by multiple streams.
In future works, we will apply our proposed method in other
tasks such as sentiment analysis. We intend also to extend the
architecture in order to treat additional NLP applications es-
pecially sequence labeling tasks such as Part-Of-Speech tag-
ging and Named Entities labeling.
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