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Abstract

This paper proposes an original method which integrates
contextual information of words into Word2vec neu-
ral networks that learn from words and their respective
context windows. However, in this word embeddings ap-
proach, context windows are represented as bag-of-words,
i.e. every word in the context is treated equally. A log-
linear weighting approach modeling the continuous con-
text is proposed in this article to make Word2vec neu-
ral networks take into account the relative position of
words in the surrounding context. Quality improvements
implied by this method are shown on the the Semantic-
Syntactic Word Relationship test and on a real applica-
tion framework, a theme identification task of human di-
alogues.
Index Terms: spoken language understanding, word2vec,
words embeddings, Continuous context model

1. Introduction
The selection of the best word representation becomes
crucial in many Speech and Text Processing tasks. The
“bag-of-words” model [1], that represents documents as
a “Term Frequency-Inverse Document Frequency” (TF-
IDF) [2] vector, is one of the most used representation.
This representation reveals little in way of intra- and inter-
document statistical structure. The limit of this type of
representation is that word order in a sequence is not
taken into account, i.e. each word being considered in-
dependently to its position in a sentence or a document.

Recently, distributed methods based on word embed-
dings as well as deep neural networks emerged [3]. In
these approaches, all words are represented by a small
dense vector corresponding to the projection of a word
in a multidimensional space. Those methods were in the
first place employed in Neural Language Models [4, 5],
and were then used in many Natural Language Process-
ing tasks [6, 7, 8]. Among these methods, the Word2vec
compact vector [9] becomes one of the most widespread
distributed word representation. Word2vec is an effi-
cient neural network based model that captures, as a lin-
ear structure, complex semantic and syntactic relations

between words from a well-structured generative model.
Its effectiveness has been demonstrated in different tasks
and domains [10, 11]. The Word2vec approach em-
ploys, during the training phase, the words and their rela-
tive context windows represented as a bag-of-words. In-
deed, inside these context windows, each word is treated
equally, its relative position being then ignored (weight
of 1 if present in the context, 0 otherwise).

The paper introduces an original words weighting ap-
proach based on the Continuous Context framework [12]
allowing the neural networks to take into account the po-
sition of words in the next surrounding context. A log-
linear weight is then associated to each word according
to its relative position in the context. The idea behinds
adapting the internal weight structure of the neural net-
work, is that the words in the close context do have a
greater impact than further ones, but which should not
be completely ignored. This work differs from [9] by
integrating all observed variables (words) contained in a
window with respect to internal words distribution (posi-
tion of the word) alongside with a well-adapted log-linear
model.

The proposed weighting method is both evaluated qual-
itatively and quantitatively with the Semantic-Syntactic
Word Relationship test [9] and a theme identification task
of spoken dialogues between an agent and a customer
from the French Paris transportation call center.

The paper is organized as follows: Section 2 details
the two Word2vec neural network architectures while
the proposed weighting function integrated into these ar-
chitectures is presented in Section 3. Experiments and
results are detailed in Section 4 before concluding in Sec-
tion 5.

2. Word2vec Architectures

Word2vec is a method based on artificial neural net-
works defined in [9]. The aim of this method is to build
word embeddings by maximizing the likelihood L that
words are predicted from their context. This method pro-
poses two shallow artificial neural network architectures:
the Continuous Bag-Of-Words (CBOW) and the Skip-



gram (SG) shown in Figure 1. Both of these models take
as input a binary vector features (1 if the word appears, 0
otherwise).

Figure 1: Word2vec neural network architectures.

The Skip-gram (SG) model predicts a context for a
given word in a vocabulary V . The input layer of the
Skip-gram algorithm only contains the central word and
projects it in the output layer, through the hidden layer.
The prediction is corrected with each word within the
context window. The Skip-gram model maximizes the
likelihood:

L =
1

T

T∑
t=1

t+c∑
j=t−c,j 6=t

log p(wj |wt) (1)

where c is a hyper-parameter defining the window of the
context words; T is the size of the training data, and c
is the size of the context for each word. The model esti-
mates a global matrix M of dimension |V | × n, where n
is the embedding dimension. Then, each embedding rep-
resentation of a word wi is mapped in a |V |-dimensional
vector vwi

to obtain the output probability p(w0, wi) for
a given word w0 is given by the softmax function:

p(w0, wi) =
evw0∑

w∈V e
vwi

(2)

The Continuous Bag-of-Words (CBOW) model at-
tempts to find the center word w0 for a given set of sur-
rounding words {w−c, . . . , w−1, w1, . . . , wc}. Each word
in the context is projected in the global matrix M . The
central word of the context window is used to correct the
network prediction using back-propagation algorithm. This
model seeks to maximize the likelihood L defined there-
after:

L =
1

T

T∑
t=1

log p(wt|wt−c...wt+c) (3)

Moreover with the Skip-gram network, a skip mechanism
is introduce . This process reduce the size of the context
c by a random number every learning step. On one hand
this mechanism make the learning faster, but on the other
hand it will skip some rare relations.

Skip-gram (SG) as well as CBOW models do not take
into account the word order to predict the output. There-
fore, these methods allow us to find out close vectorial
representation of a given word or context, but are not op-
timal to predict word sequence based on grammatical and
syntactic properties of words.

3. Log-linear Word2cec Models

The proposed method takes advantage of words position
to improve the word embedding representation with a log-
linear context weighting function [12] δ to replace binary
features of input (CBOW) or output (Skip-gram) vectors.
The context is weighted with δ(w) for each word w:

δ(w) =
α

γ + βlog(d(w))
(4)

where d(w) is the distance between the word in the
center of the context c and the wordw to weight; α, γ and
β are parameters of the distance function. The log-linear
function is well adapted to words weighting because this
function will give high weights to words close to the cen-
ter and lower weights to further words in the context. In
other words, it considers that further words in the context
have a lower impact than closer ones, but however should
not be ignored. Figure 2 presents these models including
the proposed context weighting approach.

3.1. Log-linear CBOW (LL-CBOW)

The proposed approach differs from the classical CBOW,
by replacing the binary input features (1 if the word wi ∈
c, 0 otherwise) with the value of δ(w). Thus, this model,
denoted LL-CBOW, gives a different weight to the word
wi depending on its position in the context window of
words c.

3.2. Log-linear Skip-gram (LL-SG)

The SG final layer uses a softmax activation function which
can hardly predict more than one word at a time. To cor-
rect the network with a context window, one have to cal-
culate the error between the prediction and each word in
the context to learn one by one. This process prevents
the use of the weighted sum to mirror the LL-CBOW. In-
stead, weights are applied on the errors generated based
on words distance.

4. Experiments and Results

In this section, we propose to evaluate the effectiveness of
the proposed weighting window by comparing this origi-
nal approach with the initial one on the Semantic-Syntactic
Word Relationship test and on a theme identification task
of spoken dialogues.



Figure 2: Word2vec method using the proposed log-
linear context weighting approach.

4.1. Semantic-Syntactic Word Relationship test

The Semantic-syntactic Word relationship test [9] is made
of 19,000 questions. Its main objective is to verify if
a distributed representation of words captures complex
syntactic and semantic relations between words. A ques-
tion is made of two pairs of words sharing the same rela-
tion:

Paris− France = London− England (5)

Performance is measured in terms of percentage of cor-
rectly retrieved relations. For this experiment, different
Word2vec Skip-gram and CBOW configurations with
various context and hidden layer sizes are evaluated as
shown in Tables 2 and 3. The weighting function is de-
fined for these experiments as follows:

δ(w) =
1 + log(2)

1 + log(d(w))
(6)

The English corpus used for training the different word
embeddings is composed of:

Word Language Modeling Benchmark : a corpus made
for language modeling containing 31 million doc-
uments (700 million words).

Wikipedia : an English dump from Wikipedia contain-
ing 124 303 documents (124 million words).

Gigaword : the English Gigaword from 1994 to 2011
containing 190 million documents (3,771 million
words).

the Brown corpus : general text corpus in the field of
corpus linguistics containing 57,341 documents (1
million words).

The final training corpus contains around 4 billion words
for a vocabulary size of 1 million words. Table 1 presents
neighborhood words extracted with CBOW and LL-CBOW

trained on this corpus, one could notice that models inte-
grating log-linear weighting tend to thematically gather
related words.

Table 1: Examples of neighborhood words extracted from
models trained without (CBOW baseline) and with con-
textual information (LL-CBOW proposed approach).

Holidays Meat
LL-CBOW CBOW LL-CBOW CBOW

holiday vacations chicken pork
vacation thanksgiving beef not-pasteurized

festivities vacation pork mutton
thanksgiving christmas milk eggs

easter celebration eggs cattle
christmas easter seafood chicken

Tables 2 and 3 show that models trained using the
proposed continuous context weighting approach glob-
ally achieve better results. Best improvement is obtained
using the whole document as the context (100 words),
with a gain of 7% for the LL-CBOW and of 7.7% for
the LL-SG. The negative impact of the context window
size is reduced and almost neglected using LL-SG, con-
versely to both Skip-gram and CBOW where the perfor-
mance falls when augmenting the context size. Moreover
the LL-CBOW is improved by the using bigger weighted
context. Furthermore, Table 3 points out that a smaller
hidden layer tends to have a smaller gain by using the
log-linear weighting method. This could be explained by
the fact that having a smaller hidden layer makes the net-
work capable of memorizing less information, making it
more difficult for it to capture the contextual information.

Table 2: Accuracies (%) on the Semantic-Syntactic Word
Relationship test depending on the context size (c) with a
hidden layer of size 300.

Skip-gram CBOW
context 10 15 100 10 15 100
standard 50.0 50.9 43.7 39 38.9 36.9

log-linear 55.0 53.7 51.4 39.9 39.6 43.9

Table 3: Accuracies (%) on the Semantic-Syntactic Word
Relationship test without and with weighting distance us-
ing different hidden layer sizes and a context window of
size 10.

Skip-gram CBOW
hidden layer’s size 120 300 120 300

standard 43.9 50.0 29.0 39.0
log-linear 45.1 55.0 30.3 39.9



Table 4: Description of the DECODA dataset.

Class Number of samples
label training dev. text

problems of itinerary 145 44 67
lost and found 143 33 63
time schedules 47 7 18

transportation cards 106 24 47
state of the traffic 202 45 90

fares 19 9 11
infractions 47 4 18

special offers 31 9 13
Total 740 175 327

4.2. Classification of Telephone Conversations

The second experiment evaluates the proposed weight-
ing approach in a classification task using the DECODA
project corpus [13] which aims at identifying conversa-
tion themes. This corpus is composed of 1,242 telephone
conversations split in training, dev. and test validation
sets, each conversation being manually annotated with
one of the 8 themes as shown in Table 4.

The LIA-Speeral automatic speech recognition (ASR)
system [14] with 230,000 Gaussians in the triphone acous-
tic models has been used for the experiments. Model
parameters were estimated with maximum a posteriori
probability (MAP) adaptation from 150 hours of speech
in telephone condition. The vocabulary contains 5,782
words, a 3-gram language model (LM) was obtained by
adapting a basic LM with the transcriptions of the DE-
CODA training set. The ASR system obtains Word Er-
ror Rates (WER) of 33.8% on the training, 45.2% on
the development, and 49.5% on the test set. These high
WERs are mainly due to speech disfluencies and to ad-
verse acoustic environments for some dialogues. The
word embedding models are trained on a French corpus
composed of:

GigaWord : The French version containing 17 million
documents (500 million words).

Wikipedia : A dump of the French Wikipedia composed
of 16 million documents (400 million words).

Newspapers : Various French newspapers such as the
AFP, Le Monde and Le Soir containing 56 million
documents (737 million words).

Documents crawled : Documents crawled from the In-
ternet representing 4 million documents (108 mil-
lion words).

Manual transcriptions : Various manual transcription
from recent French evaluation campaigns such as
ESTER, EPAC, ETAPE and REPERE, containing
411,000 documents (379 million words).

This corpus contains 2 billion words for a vocabulary
of 3 million words. The train set is used to compose a
subset of discriminative words selected with the TF-IDF-
Gini method [15]. For each theme, a set of 100 specific
words is identified to form a vocabulary of 707 words.
All the selected words are then merged without repetition
(note that a same word may appear in the vocabulary of
more than one theme). Each discriminant word is used as
a landmark in the multidimensional space. Then each dia-
logue is assigned with a vector of scores representing the
distance between the sum of words in the dialogue and
each landmark. Finally, those features are given to a clas-
sifier. To evaluate the impact of the continuous context
weighting function, 4 models were trained: a CBOW, a
LL-CBOW, a Skip-gram and a LL-SG. Both LL-CBOW
and LL-SG methods use the proposed weighting func-
tion defined in Section 4.1, while baseline approaches
(CBOW and Skip-gram) do not integrate any weighting
function.

For this task, two different types of classifiers are used:
a Gradient Tree Boosting (GTB) [16, 17] and a Multi-
layer Perceptron (MLP) neural network [18, 19]. GTB
algorithm is a generalization of the boosting algorithm
using a loss function. This classifier is used as the base-
line classifier for its off-the-shelf performance. The Mul-
tilayer Perceptron (MLP) neural network [18, 19] is made
of 3 layers: 707, 32 and 8 neurons for input, hidden and
output respectively with “sigmoid” then “softmax” acti-
vation layers as well as dropout regularization. Each clas-
sifier is trained with the features made with the 4 models.

The accuracies observed on both development and
test sets using Skip-gram/LL-SG and CBOW/LL-CBOW
architectures, are presented in Table 5. This table points
out that all the tested classification approaches improve
their performance by using the proposed contextual in-
formation. Moreover, the weighting function allows the
Skip-gram based models (LL-SG) to better identify the
theme in the dialogues with a gain of 10 and 20 points
with the GTB and MLP classification methods respec-
tively. This phenomenon is also observed for the CBOW-
based models (LL-CBOW) with a gain of 33 and 34 points
for the GTB and MLP classification methods respectively.
For the MLP, results are measured every 10 epochs on
the dev. and reported in Figure 3. Models trained with
the log-linear weighting approach are more accurate and
converge faster than their counterpart.

These experiments show that inserting a log-linear
weight in a Word2vec model allows us to capture more
information: the bigger the context is, the more important
information the continuous context contains. In these ex-
periments, neural networks need a large enough hidden
layer to capture the additional information. This differ-
ence leads to slightly better models, as shown by the gain
on the Semantic-Syntactic Word Relationship test (see
Section 4.1). Results on the DECODA task show that
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Figure 3: DECODA theme identification accuracies (y
axis in %) obtained with the Skip-gram and CBOW mod-
els as well as the proposed LL-SG and LL-CBOW mod-
els in bold for different epochs.

Table 5: Classification accuracies (%) on the DECODA
task using two classification approaches and features
from word embeddings models without (standard) and
with log-linear weighting.

Skip-gram CBOW
Dev. Test Dev. Test

GTB(standard) 39 42 28 27
GTB(log-linear) 56 52 66 60
MLP(standard) 50 50 41 37

MLP(log-linear) 75 70 74 71

Word2vec embeddings learnt with the contextual infor-
mation project words in a space where a thematic classi-
fication on textual data coming from spoken dialogues is

made easier.

5. Conclusion
The Word2vec context window uses words as a bag-of-
words representation and randomly ignores distant words
and thus. A bag-of-words representation treats each word
equally in a given context. Both qualitative and quantita-
tive experiments show that the Word2vec compact repre-
sentation without an adapted weighting strategy obtains
lower results compared to the performance obtained with
the proposed log-linear weighting approach. This paper
proposes an alternative word weighting method that re-
inforces the contextual information and preserves distant
relationship in distributed representations of words. Our
experiments made on a word similarity test and a classifi-
cation task of noisy spoken dialogues, show that accura-
cies were improved to 7% on the similarity task, and more
than 20% on the classification task. These experiments
also demonstrate that the use of our method is relevant to
a thematic classification task based on word embedding
features. We plan to extend this work by evaluating the
impact of different types of weighting functions and of
the same information on different distributed word repre-
sentations.
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